JC
Jeffrey Christians
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
8,702
h-index:
32
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air

Jeffrey Christians et al.Jan 15, 2015
Humidity has been an important factor, in both negative and positive ways, in the development of perovskite solar cells and will prove critical in the push to commercialize this exciting new photovoltaic technology. The interaction between CH(3)NH(3)PbI(3) and H(2)O vapor is investigated by characterizing the ground-state and excited-state optical absorption properties and probing morphology and crystal structure. These undertakings reveal that H(2)O exposure does not simply cause CH(3)NH(3)PbI(3) to revert to PbI(2). It is shown that, in the dark, H(2)O is able to complex with the perovskite, forming a hydrate product similar to (CH(3)NH(3))(4)PbI(6)·2H(2)O. This causes a decrease in absorption across the visible region of the spectrum and a distinct change in the crystal structure of the material. Femtosecond transient absorption spectroscopic measurements show the effect that humidity has on the ultrafast excited state dynamics of CH(3)NH(3)PbI(3). More importantly, the deleterious effects of humidity on complete solar cells, specifically on photovoltaic efficiency and stability, are explored in the light of these spectroscopic understandings.
0

Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

Jeffrey Christians et al.Jan 4, 2018
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10–20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance. The stability of perovskite solar cells depends on each layer and interface in the device. Here, Christians et al. systematically design the entire device stack focusing on stability, creating cells that retain 88% of their initial efficiency on average, after 1,000 h of unencapsulated operation.
0

Making and Breaking of Lead Halide Perovskites

Joseph Manser et al.Jan 20, 2016
A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.
0
Paper
Citation631
0
Save
0

Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics

Lance Wheeler et al.Jul 25, 2018
The ability to manipulate quantum dot (QD) surfaces is foundational to their technological deployment. Surface manipulation of metal halide perovskite (MHP) QDs has proven particularly challenging in comparison to that of more established inorganic materials due to dynamic surface species and low material formation energy; most conventional methods of chemical manipulation targeted at the MHP QD surface will result in transformation or dissolution of the MHP crystal. In previous work, we have demonstrated record-efficiency QD solar cells (QDSCs) based on ligand-exchange procedures that electronically couple MHP QDs yet maintain their nanocrystalline size, which stabilizes the corner-sharing structure of the constituent PbI64– octahedra with optoelectronic properties optimal for solar energy conversion. In this work, we employ a variety of spectroscopic techniques to develop a molecular-level understanding of the MHP QD surface chemistry in this system. We individually target both the anionic (oleate) and cationic (oleylammonium) ligands. We find that atmospheric moisture aids the process by hydrolysis of methyl acetate to generate acetic acid and methanol. Acetic acid then replaces native oleate ligands to yield QD surface-bound acetate and free oleic acid. The native oleylammonium ligands remain throughout this film deposition process and are exchanged during a final treatment step employing smaller cations—namely, formamidinium. This final treatment has a narrow processing window; initial treatment at this stage leads to a more strongly coupled QD regime followed by transformation into a bulk MHP film after longer treatment. These insights provide chemical understanding to the deposition of high-quality, electronically coupled MHP QD films that maintain both quantum confinement and their crystalline phase and attain high photovoltaic performance.
0

Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good

Jeffrey Christians et al.Mar 5, 2015
ADVERTISEMENT RETURN TO ISSUEPREVViewpointNEXTBest Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look GoodJeffrey A. Christians†‡, Joseph S. Manser†‡, and Prashant V. Kamat*†‡§View Author Information† ‡ § †Radiation Laboratory, ‡Department of Chemical and Biomolecular Engineering, and §Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States*E-mail: [email protected]Cite this: J. Phys. Chem. Lett. 2015, 6, 5, 852–857Publication Date (Web):March 5, 2015Publication History Published online5 March 2015Published inissue 5 March 2015https://pubs.acs.org/doi/10.1021/acs.jpclett.5b00289https://doi.org/10.1021/acs.jpclett.5b00289editorialACS PublicationsCopyright © 2015 American Chemical Society. This publication is available under these Terms of Use. Request reuse permissions This publication is free to access through this site. Learn MoreArticle Views20415Altmetric-Citations293LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail PDF (1 MB) Get e-AlertscloseSUBJECTS:Electrical properties,Photonics,Photovoltaics,Power,Solar cells Get e-Alerts
Load More