SI
Swathi Ippili
Author with expertise in Wearable Nanogenerator Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
1
h-index:
15
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Flexo-Phototronic Boosted Self-Powered Ultraviolet Detection in ZnAl:Layered Double Hydroxide Nanosheets/NiO Heterostructure

Alphi Thomas et al.Aug 9, 2024
Developing self-powered and flexible optoelectronic sensors with high responsivity and speed is crucial for modern applications, motivating continuous efforts to enhance their performance. Flexo-phototronics is a less-explored but promising technique to elevate the performance of optoelectronics. Therefore, this work addresses the potential of utilizing the flexo-phototronic effect to enhance the performance of a flexible and self-powered ultraviolet photodetector (UV PD) based on ZnAl:LDH (layered double hydroxides) nanosheets (Ns)/NiO heterostructure. The vertically oriented ZnAl:LDH Ns are synthesized via a simple method involving the immersion of a sputtered 10% Al-doped ZnO thin film in deionized water at room ambient conditions. The fabricated PD exhibits an impressive response to 365 nm UV light, with high sensitivity in the order of 103. The device's photocurrent and responsivity are significantly enhanced by the flexo-phototronic effect, attributed to the flexoelectric properties of ZnAl:LDH Ns. Specifically, applying an inhomogeneous tensile strain of 2% boosted the device responsivity by 57.1% and improved its operational speed. Furthermore, a working model revealing the altered energy-band structure is demonstrated to elucidate the flexo-phototronic-induced boost in the photoresponse. The PD also demonstrated a sustainable performance under severe bending cycles, underlining the good flexibility of the device. The results presented in this study demonstrate a self-powered and flexible UV PD and provide a viable approach to augment the performance of optoelectronics through the flexo-phototronic effect.
0
Citation1
0
Save
0

Advancing Charge Density in Temperature‐Dependent Amphiphile Metal–Organic Polyhedra‐Based Triboelectric Nanogenerators

Swathi Ippili et al.Aug 18, 2024
Abstract In this study, a mechanically flexible structure, a cuboctahedral metal‐organic polyhedra (MOP) Cu 24 [5‐(octyloxy) isophthalic acid] 24 Cu (II) paddlewheel clusters coordinated with (5‐(octyloxy) isophthalate), resulting in significantly enhanced hydrolytic stability are prepared. It should be noted that CuMOP‐1 exhibits evenly and symmetrically distributed non‐polar long alkyl chains and polar hydroxy groups, facilitating self‐assembly into higher‐order structures reminiscent of amphiphiles. Furthermore, the resultant CuMOP‐1 undergoes a phase change at 150–160 °C as confirmed temperature‐dependent Raman spectroscopy (RS), thermogravimetric analysis and Differential Scanning Calorimetry (TGA‐DSC). The possible use of Cu‐MOP‐1 for capturing mechanical energy is demonstrated by creating a flexible hybrid piezoelectric‐triboelectric nanogenerator (HP‐TENG). The resultant CuMOP‐1@ Polyvinylidene fluoride(PVDF) membrane‐based HP‐TENG demonstrates enhanced triboelectric output voltage of 547.5 V, current density of 15.16 µAcm −2 , and power density of 2.8 mWcm −2 due to its increased surface charge density and a substantial rise in the dielectric constant. Furthermore, the amphiphiles and phase change in CuMOP‐1 lead to ∽73% increase in voltage and 60% in current density of HP‐TENG in high‐temperature (140 °C) environments. HP‐TENG also exhibits exceptional temperature‐ and pressure‐sensing abilities, with sensitivities of 1.81 V°C −1 and 7.12 V°kPa −1 , respectively, showcasing its feasibility over a wide range of temperatures and pressures.