MT
Michael Toney
Author with expertise in Organic Solar Cell Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
78
(49% Open Access)
Cited by:
36,017
h-index:
133
/
i10-index:
560
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight

R. Kline et al.Mar 12, 2005
Morphological characterization has been used to explain the previously observed strong correlation between charge carrier mobility measured with thin-film transistors and the number-average molecular weight (MW) of the conjugated polymer regioregular poly(3-hexylthiophene). Atomic force microscopy and X-ray diffraction show that the low-mobility, low-MW films have a highly ordered structure composed of nanorods and the high-mobility, high-MW films have a less ordered, isotropic nodule structure. Modifying the morphology for a constant MW by changing the casting conditions or annealing the samples strongly affects the charge transport and morphology in the low-mobility, low-MW films, but has little effect on the high-MW films. In-plane grazing incidence X-ray scattering shows the in-plane π-stacking peak increases when the mobility increases for a constant MW. When the MW is changed, this correlation breaks down, confirming that in-plane π-stacking does not cause the mobility−MW relationship. We believe a combination of disordered domain boundaries and inherent effects of chain length on the electronic structure cause the mobility−MW relationship.
0

Tuning charge transport in solution-sheared organic semiconductors using lattice strain

Gaurav Giri et al.Dec 1, 2011
A solution-processing method known as solution shearing is used to introduce lattice strain to organic semiconductors, thus improving charge carrier mobility. Solution-processed organic semiconductors show great promise for application in cheap and flexible electronic devices, but generally suffer from greatly reduced electronic performance — most notably charge-carrier mobilities — compared with their inorganic counterparts. Borrowing a trick from the inorganic semiconductor community, Giri et al. show how the introduction of strain into an organic semiconductor, through a simple solution-processing technique, modifies the molecular packing within the material and hence its electronic performance. For one material studied, the preparation of a strained structure is shown to more than double the charge-carrier mobility. Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications1,2,3,4,5. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice6. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π–π stacking distance) greatly influences electron orbital overlap and therefore mobility7. Using our method to incrementally introduce lattice strain, we alter the π–π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 Å to 3.08 Å. We believe that 3.08 Å is the shortest π–π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π–π distance of 3.04 Å has been achieved through intramolecular bonding8,9,10). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm2 V−1 s−1 for unstrained films to a high mobility of 4.6 cm2 V−1 s−1 for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.
0

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

Rohit Prasanna et al.Jul 13, 2017
Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.
0
Paper
Citation648
0
Save
Load More