PL
Patricia Lepage
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(72% Open Access)
Cited by:
22,823
h-index:
68
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin et al.Mar 1, 2010
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively. The human body plays host to an estimated 100 trillion microbial cells, most of them in the gut where they have a profound influence on human physiology and nutrition — and are now regarded as crucial for human life. Gut microbes contribute to the energy harvest from food, and changes of gut microbiome may be associated with bowel diseases or obesity. Now the international MetaHIT (Metagenomics of the Human Intestinal Tract) project has published a gene catalogue of the human gut microbiome derived from 124 healthy, overweight and obese human adults, as well as inflammatory disease patients, from Denmark and Spain. The resulting data provide the first insights into this gene set — which is over 150 times larger than the human gene complement — and show that the genes are largely shared among individuals. Based on the variety of functions encoded by the gene set, it is possible to define both a minimal gut metagenome and a minimal gut bacterial genome. Deep metagenomic sequencing and characterization of the human gut microbiome from healthy and obese individuals, as well as those suffering from inflammatory bowel disease, provide the first insights into this gene set and how much of it is shared among individuals. The minimal gut metagenome as well as the minimal gut bacterial genome is also described.
0
0

Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab

Nathalie Chaput et al.Mar 24, 2017
Ipilimumab, an immune checkpoint inhibitor targeting CTLA-4, prolongs survival in a subset of patients with metastatic melanoma (MM) but can induce immune-related adverse events, including enterocolitis. We hypothesized that baseline gut microbiota could predict ipilimumab anti-tumor response and/or intestinal toxicity.Twenty-six patients with MM treated with ipilimumab were prospectively enrolled. Fecal microbiota composition was assessed using 16S rRNA gene sequencing at baseline and before each ipilimumab infusion. Patients were further clustered based on microbiota patterns. Peripheral blood lymphocytes immunophenotypes were studied in parallel.A distinct baseline gut microbiota composition was associated with both clinical response and colitis. Compared with patients whose baseline microbiota was driven by Bacteroides (cluster B, n = 10), patients whose baseline microbiota was enriched with Faecalibacterium genus and other Firmicutes (cluster A, n = 12) had longer progression-free survival (P = 0.0039) and overall survival (P = 0.051). Most of the baseline colitis-associated phylotypes were related to Firmicutes (e.g. relatives of Faecalibacterium prausnitzii and Gemmiger formicilis), whereas no colitis-related phylotypes were assigned to Bacteroidetes. A low proportion of peripheral blood regulatory T cells was associated with cluster A, long-term clinical benefit and colitis. Ipilimumab led to a higher inducible T-cell COStimulator induction on CD4+ T cells and to a higher increase in serum CD25 in patients who belonged to Faecalibacterium-driven cluster A.Baseline gut microbiota enriched with Faecalibacterium and other Firmicutes is associated with beneficial clinical response to ipilimumab and more frequent occurrence of ipilimumab-induced colitis.
0
Citation1,016
0
Save
0

Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice

Tiphaine Roy et al.Nov 29, 2012

Objective

 Non-alcoholic fatty liver disease (NAFLD) is prevalent among obese people and is considered the hepatic manifestation of metabolic syndrome. However, not all obese individuals develop NAFLD. Our objective was to demonstrate the role of the gut microbiota in NAFLD development using transplantation experiments in mice. 

Design

 Two donor C57BL/6J mice were selected on the basis of their responses to a high-fat diet (HFD). Although both mice displayed similar body weight gain, one mouse, called the ‘responder’, developed hyperglycaemia and had a high plasma concentration of pro-inflammatory cytokines. The other, called a ‘non-responder’, was normoglycaemic and had a lower level of systemic inflammation. Germ-free mice were colonised with intestinal microbiota from either the responder or the non-responder and then fed the same HFD. 

Results

 Mice that received microbiota from different donors developed comparable obesity on the HFD. The responder-receiver (RR) group developed fasting hyperglycaemia and insulinaemia, whereas the non-responder-receiver (NRR) group remained normoglycaemic. In contrast to NRR mice, RR mice developed hepatic macrovesicular steatosis, which was confirmed by a higher liver concentration of triglycerides and increased expression of genes involved in de-novo lipogenesis. Pyrosequencing of the 16S ribosomal RNA genes revealed that RR and NRR mice had distinct gut microbiota including differences at the phylum, genera and species levels. 

Conclusions

 Differences in microbiota composition can determine response to a HFD in mice. These results further demonstrate that the gut microbiota contributes to the development of NAFLD independently of obesity.
0

High-fat diet alters gut microbiota physiology in mice

Hannelore Daniel et al.Sep 12, 2013
Abstract The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.
0
Citation607
0
Save
0

Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis

Patricia Lepage et al.Apr 19, 2011

Background & Aims

 Interactions between genetic and environmental factors are believed to be involved in onset and initiation of inflammatory bowel disease. We analyzed the interaction between gastrointestinal mucosal microbiota and host genes in twin pairs discordant for ulcerative colitis (UC) to study the functional interaction between microbiota and mucosal epithelium. 

Methods

 Biopsy were collected from sigmoid colon of UC patients and their healthy twins (discordant twin pairs) and from twins without UC. Microbiota profiles were determined from analysis of 16S ribosomal DNA libraries; messenger RNA profiles were determined by microarray analysis. 

Results

 Patients with UC had dysbiotic microbiota, characterized by less bacterial diversity and more Actinobacteria and Proteobacteria than that of their healthy siblings; healthy siblings from discordant twins had more bacteria from the Lachnospiraceae and Ruminococcaceae families than twins who were both healthy. In twins who were both healthy, 34 mucosal transcripts correlated with bacterial genera, whereas only 25 and 11 correlated with bacteria genera in healthy individuals and their twins with UC, respectively. Transcripts related to oxidative and immune responses were differentially expressed between patients with UC and their healthy twins. 

Conclusions

 The transcriptional profile of the mucosa appears to interact with the colonic microbiota; this interaction appears to be lost in colon of patients with UC. Bacterial functions, such as butyrate production, might affect mucosal gene expression. Patients with UC had different gene expression profiles and lower levels of biodiversity than their healthy twins, as well as unusual aerobic bacteria. Patients with UC had lower percentages of potentially protective bacterial species than their healthy twins.
0
Citation547
0
Save
0

Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease

Marta Llopis et al.Dec 7, 2015
There is substantial inter-individual diversity in the susceptibility of alcoholics to liver injury. Alterations of intestinal microbiota (IM) have been reported in alcoholic liver disease (ALD), but the extent to which they are merely a consequence or a cause is unknown. We aimed to demonstrate that a specific dysbiosis contributes to the development of alcoholic hepatitis (AH).We humanised germ-free and conventional mice using human IM transplant from alcoholic patients with or without AH. The consequences on alcohol-fed recipient mice were studied.A specific dysbiosis was associated with ALD severity in patients. Mice harbouring the IM from a patient with severe AH (sAH) developed more severe liver inflammation with an increased number of liver T lymphocyte subsets and Natural Killer T (NKT) lymphocytes, higher liver necrosis, greater intestinal permeability and higher translocation of bacteria than mice harbouring the IM from an alcoholic patient without AH (noAH). Similarly, CD45+ lymphocyte subsets were increased in visceral adipose tissue, and CD4(+)T and NKT lymphocytes in mesenteric lymph nodes. The IM associated with sAH and noAH could be distinguished by differences in bacterial abundance and composition. Key deleterious species were associated with sAH while the Faecalibacterium genus was associated with noAH. Ursodeoxycholic acid was more abundant in faeces from noAH mice. Additionally, in conventional mice humanised with the IM from an sAH patient, a second subsequent transfer of IM from an noAH patient improved alcohol-induced liver lesions.Individual susceptibility to ALD is substantially driven by IM. It may, therefore, be possible to prevent and manage ALD by IM manipulation.
Load More