LW
Lesley Wyborn
Author with expertise in Management and Reproducibility of Scientific Workflows
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
707
h-index:
22
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Australian Geoscience Data Cube — Foundations and lessons learned

Adam Lewis et al.Apr 12, 2017
The Australian Geoscience Data Cube (AGDC) aims to realise the full potential of Earth observation data holdings by addressing the Big Data challenges of volume, velocity, and variety that otherwise limit the usefulness of Earth observation data. There have been several iterations and AGDC version 2 is a major advance on previous work. The foundations and core components of the AGDC are: (1) data preparation, including geometric and radiometric corrections to Earth observation data to produce standardised surface reflectance measurements that support time-series analysis, and collection management systems which track the provenance of each Data Cube product and formalise re-processing decisions; (2) the software environment used to manage and interact with the data; and (3) the supporting high performance computing environment provided by the Australian National Computational Infrastructure (NCI). A growing number of examples demonstrate that our data cube approach allows analysts to extract rich new information from Earth observation time series, including through new methods that draw on the full spatial and temporal coverage of the Earth observation archives. To enable easy-uptake of the AGDC, and to facilitate future cooperative development, our code is developed under an open-source, Apache License, Version 2.0. This open-source approach is enabling other organisations, including the Committee on Earth Observing Satellites (CEOS), to explore the use of similar data cubes in developing countries.
0
Paper
Citation296
0
Save
0

Ocean FAIR Data Services

Toste Tanhua et al.Aug 7, 2019
Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access, and secure archiving that guarantees long-term preservation. To achieve this, data should be Findable, Accessible, Interoperable, and Reusable (FAIR). Here, we outline how these principles apply to ocean data, and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increases dramatically. For instance, there are more than 70 data catalogues that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users and is an essential foundation for the development of new services made possible with big data technologies.
0
Paper
Citation196
0
Save
0

Harmonizing quality measures of FAIRness assessment towards machine-actionable quality information

Ge Peng et al.Aug 22, 2024
FAIR Principles are a set of high-level guidelines for sharing digital resources. The growing global adoption of the FAIR Principles by policymakers, funders, and organizations compels data professionals, projects, and repositories to demonstrate the level of FAIR-compliance (referred to as FAIRness) of their digital data, metadata, and infrastructures. Because the FAIR Principles offer general objectives rather than specific implementation instructions, discrepancies exist due to different interpretations, domain-specific requirements, and intended applications. These discrepancies hinder direct comparisons and integration of assessment outcomes. To address this issue, we propose a novel framework, including a consolidated FAIR vocabulary. This framework establishes quality measures upfront in FAIRness assessment workflows to surpass the intricacies arising from the aforementioned dependencies. The established quality measures encapsulate the distinctive core concepts inherent in individual FAIR principles and can serve as common, fundamental pillars of holistic FAIRness assessment workflows. Building upon this fundamental set of the quality measures, we introduce a FAIRness quality maturity matrix (FAIR-QMM) as a structured, tiered, and progressive approach for evaluating and reporting the degree of FAIR-compliance. The FAIR-QMM can be used as a FAIRness assessment tool independently and/or as a translator between other FAIRness assessment tools or models.
0
0
Save
0

Managing linguistic obstacles in multidisciplinary, multinational, and multilingual research projects

Alison Specht et al.Dec 5, 2024
Environmental challenges are rarely confined to national, disciplinary, or linguistic domains. Convergent solutions require international collaboration and equitable access to new technologies and practices. The ability of international, multidisciplinary and multilingual research teams to work effectively can be challenging. A major impediment to innovation in diverse teams often stems from different understandings of the terminology used. These can vary greatly according to the cultural and disciplinary backgrounds of the team members. In this paper we take an empirical approach to examine sources of terminological confusion and their effect in a technically innovative, multidisciplinary, multinational, and multilingual research project, adhering to Open Science principles. We use guided reflection of participant experience in two contrasting teams—one applying Deep Learning (Artificial Intelligence) techniques, the other developing guidance for Open Science practices—to identify and classify the terminological obstacles encountered and reflect on their impact. Several types of terminological incongruities were identified, including fuzziness in language, disciplinary differences and multiple terms for a single meaning. A novel or technical term did not always exist in all domains, or if known, was not fully understood or adopted. Practical matters of international data collection and comparison included an unanticipated need to incorporate different types of data labels from country to country, authority to authority. Sometimes these incongruities could be solved quickly, sometimes they stopped the workflow. Active collaboration and mutual trust across the team enhanced workflows, as incompatibilities were resolved more speedily than otherwise. Based on the research experience described in this paper, we make six recommendations accompanied by suggestions for their implementation to improve the success of similar multinational, multilingual and multidisciplinary projects. These recommendations are conceptual drawing on a singular experience and remain to be sources for discussion and testing by others embarking on their research journey.
0
0
Save