MG
M. Guainazzi
Author with expertise in Astrophysical Studies of Black Holes
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,721
h-index:
56
/
i10-index:
185
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The XMM-Newton view of PG quasars

E. Piconcelli et al.Feb 22, 2005
We present results of a systematic analysis of the XMM-Newton spectra of 40 quasars (QSOs) () from the Palomar-Green (PG) Bright Quasar Survey sample (23). The sample includes 35 radio-quiet quasars (RQQs) and 5 radio-loud quasars (RLQs). The analysis of the spectra above 2 keV reveals that the hard X-ray continuum emission can be modeled with a power law component with and for the RQQs and RLQs, respectively. Below 2 keV, a strong, broad excess is present in most QSO spectra. This feature has been fitted with four different models assuming several physical scenarios. All tested models (blackbody, multicolor blackbody, bremsstrahlung and power law) satisfactorily fitted the majority of the spectra. However, none of them is able to provide an adequate parameterization for the soft excess emission in all QSOs, indicating the absence of a universal shape for this spectral feature. An additional cold absorption component was required only in three sources. On the other hand, as recently pointed out by Porquet et al. ([CITE]) for a smaller sample of PG QSOs, warm absorber features are present in 50% of the QSO spectra in contrast with their rare occurrence (~5-10%) in previous studies. The XMM-Newton view of optically selected bright QSOs therefore suggests that there are no significant differences in the X-ray spectral properties compared with those of the low-luminosity Seyfert 1 galaxies. Properties of the Fe Kα emission lines are presented in a companion paper.
0
Citation394
0
Save
0

The quiescent intracluster medium in the core of the Perseus cluster

F. Aharonian et al.Jul 5, 2016
X-ray observations of the core of the Perseus cluster reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of about 164 kilometres per second in the region 30–60 kiloparsecs from the central nucleus; turbulent pressure support in the gas is four per cent of the thermodynamic pressure, necessitating only a small correction to the total cluster mass determined from hydrostatic equilibrium. The Hitomi collaboration reports X-ray observations of the core of the Perseus cluster of galaxies — the brightest X-ray-emitting cluster in the sky. Such clusters typically consist of tens to thousands of galaxies bound together by gravity and are studied as models of both small-scale cosmology and large-scale astrophysical processes. The data reveal a remarkably quiescent atmosphere, where gas velocities are quite low, with a line-of-sight velocity dispersion of about 164 kilometres per second at a distance of 30–60 kiloparsecs from the central nucleus. Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes1 of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback2,3,4,5,6. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.
0

The in-orbit XRISM science operations

Katsuhiro Hayashi et al.Aug 21, 2024
The X-Ray Imaging and Spectroscopy Mission (XRISM) is an international X-ray observatory developed by Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA) in collaboration with European Space Agency (ESA), successfully launched in September 2023. Since the early stage of the project, the XRISM science operations team (SOT) was organized independently of the spacecraft bus system and mission instrument development teams, having prepared for the in-orbit science operations to maximize the scientific outputs. During about half year for the initial operation phase after launch, operations for the mission instruments were started, and the quick-look and the pipeline processes were carried out by SOT in order to check the functions of the instruments. After transition to the nominal operation phase, we started the target observations in the performance verification phase, whose short and long-term observation plans are considered by SOT, including planning the target of opportunity observations. The information on the observation modes of the mission instruments and the status of the data processing is maintained collectively in database synchronized between JAXA and NASA. We also performed the performance verification and optimization activities which provide the well-calibrated data, appropriate tools, and analysis methods for the users and established a help desk that supports the XRISM data analysis. The publicly solicited observation for the guest observer will be started from August or September 2024. These daily science operations are being carried out by dedicated scientists belonging to JAXA in collaboration with the other SOT members, the mission operations team and the instrument teams. This paper will introduce the ground system for the XRISM science operations and report on the activities of the SOT from the launch to today and plans for future science operations.
0

Late-time Radio Brightening and Emergence of a Radio Jet in the Changing-look AGN 1ES 1927+654

Eileen Meyer et al.Jan 1, 2025
Abstract We present multifrequency (5–345 GHz) and multiresolution radio observations of 1ES 1927+654, widely considered one of the most unusual and extreme changing-look active galactic nuclei (CL-AGNs). The source was first designated a CL-AGN after an optical outburst in late 2017 and has since displayed considerable changes in X-ray emission, including the destruction and rebuilding of the X-ray corona in 2019–2020. Radio observations prior to 2023 show a faint and compact radio source typical of a radio-quiet AGN. Starting in 2023 February, 1ES 1927+654 began exhibiting a radio flare with a steep exponential rise, reaching a peak 60 times previous flux levels, and has maintained this higher level of radio emission for over a year to date. The 5–23 GHz spectrum is broadly similar to gigahertz-peaked radio sources, which are understood to be young radio jets less than ∼1000 yr old. Recent high-resolution Very Long Baseline Array observations at 23.5 GHz now show resolved extensions on either side of the core, with a separation of ∼0.15 pc, consistent with a new and mildly relativistic bipolar outflow. A steady increase in the soft X-ray band (0.3–2 keV) concurrent with the radio may be consistent with jet-driven shocked gas, though further observations are needed to test alternate scenarios. This source joins a growing number of CL-AGNs and tidal disruption events that show late-time radio activity, years after the initial outburst.