YM
Yugo Miseki
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
1,046
h-index:
31
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent

Kosuke Iizuka et al.Nov 16, 2011
Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) photocatalysts with 3.79–3.85 eV of band gaps and layered perovskite structures showed activities for CO2 reduction to form CO and HCOOH by bubbling CO2 gas into the aqueous suspension of the photocatalyst powder without any sacrificial reagents. Ag cocatalyst-loaded BaLa4Ti4O15 was the most active photocatalyst. A liquid-phase chemical reduction method was better than impregnation and in situ photodeposition methods for the loading of the Ag cocatalyst. The Ag cocatalyst prepared by the liquid-phase chemical reduction method was loaded as fine particles with the size smaller than 10 nm on the edge of the BaLa4Ti4O15 photocatalyst powder with a plate shape during the CO2 reduction. CO was the main reduction product rather than H2 even in an aqueous medium on the optimized Ag/BaLa4Ti4O15 photocatalyst. Evolution of O2 in a stoichiometric ratio (H2+CO:O2 = 2:1 in a molar ratio) indicated that water was consumed as a reducing reagent (an electron donor) for the CO2 reduction. Thus, an uphill reaction of CO2 reduction accompanied with water oxidation was achieved using the Ag/BaLa4Ti4O15 photocatalyst.
0

Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure

Yugo Miseki et al.Jan 1, 2009
Photophysical and photocatalytic properties of A5Nb4O15 (A = Sr and Ba), Ba3LaNb3O12, ALa4Ti4O15 (A = Ca, Sr, and Ba), and La4Ti3O12 with layered perovskite structures, in which a plane in parallel with (111) of a simple perovskite structure was exposed at interlayer, were investigated. These oxides were obtained by a polymerizable complex method at 973–1473 K though only A5Nb4O15 (A = Sr and Ba) were prepared by a solid state reaction even at 1673 K. The shapes of these complex metal oxides were plate-like derived from the perovskite layered structure. These band gaps were estimated to be 3.7–4.1 eV from the onsets of diffuse reflection spectra. These oxides showed photoluminescence at 77 K. These oxides loaded with NiO cocatalysts showed activities for water splitting under UV irradiation. NiOx/BaLa4Ti4O15 and NiOx/Ba5Nb4O15 showed the highest activities among the titanates and niobates tested in the present study. NiOx/BaLa4Ti4O15 and NiOx/Ba5Nb4O15 gave 15% and 17% of quantum yields at 270 nm, respectively. Photocatalytic activities of ALa4Ti4O15 (A = Ca, Sr, and Ba) strongly depended on the alkaline earth metal ion. Pt, Au, Ni, and PbO2 were selectively photodeposited on basal or edge plane of the BaLa4Ti4O15 plate-like powder while these were randomly loaded on CaLa4Ti4O15. It was suggested that this difference in the surface property was the one of the important factors affecting photocatalytic ability for ALa4Ti4O15 (A = Ca, Sr, and Ba).