PG
Paul Guerrero
Author with expertise in Analysis of Three-Dimensional Shape Structures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
431
h-index:
19
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

StructureNet

Kaichun Mo et al.Nov 8, 2019
The ability to generate novel, diverse, and realistic 3D shapes along with associated part semantics and structure is central to many applications requiring high-quality 3D assets or large volumes of realistic training data. A key challenge towards this goal is how to accommodate diverse shape variations, including both continuous deformations of parts as well as structural or discrete alterations which add to, remove from, or modify the shape constituents and compositional structure. Such object structure can typically be organized into a hierarchy of constituent object parts and relationships, represented as a hierarchy of n -ary graphs. We introduce StructureNet, a hierarchical graph network which (i) can directly encode shapes represented as such n -ary graphs, (ii) can be robustly trained on large and complex shape families, and (iii) be used to generate a great diversity of realistic structured shape geometries. Technically, we accomplish this by drawing inspiration from recent advances in graph neural networks to propose an order-invariant encoding of n -ary graphs, considering jointly both part geometry and inter-part relations during network training. We extensively evaluate the quality of the learned latent spaces for various shape families and show significant advantages over baseline and competing methods. The learned latent spaces enable several structure-aware geometry processing applications, including shape generation and interpolation, shape editing, or shape structure discovery directly from un-annotated images, point clouds, or partial scans.
0

PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds

Marie‐Julie Rakotosaona et al.Jun 25, 2019
Abstract Point clouds obtained with 3D scanners or by image‐based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non‐local averaging or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data‐driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely sampled point clouds. In our extensive evaluation, both on synthetic and real data, we show an increased robustness to strong noise levels compared to various state‐of‐the‐art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre‐trained networks can be found on the project page ( https://github.com/mrakotosaon/pointcleannet ).
0
Paper
Citation212
0
Save
0

Procedural Material Generation with Reinforcement Learning

Beichen Li et al.Nov 19, 2024
Modern 3D content creation heavily relies on procedural assets. In particular, procedural materials are ubiquitous in the industry, but their manipulation remains challenging. Previous work [Hu et al. 2023] conditionally generates procedural graphs that match a given input image. However, the parameter generation step limits how accurately the generated graph matches the input image, due to a reliance on supervision with scarcely available procedural data. We propose to improve parameter prediction accuracy for image-conditioned procedural material generation by leveraging reinforcement learning (RL) and present the first RL approach for procedural materials. RL circumvents the limited availability of procedural data, the domain gap between real and synthetic materials, and the need for end-to-end differentiable loss functions. Given a target image, we retrieve a procedural material and use an RL-trained transformer model to predict a set of parameters that reconstruct the target image as closely as possible. We show that using RL significantly improves parameter prediction to match a given target image compared to supervised methods on both synthetic and real target images.