XP
Xiangfang Peng
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(17% Open Access)
Cited by:
2,757
h-index:
51
/
i10-index:
162
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring

Xin Jing et al.Jun 4, 2018
Integrating multifunctionality such as adhesiveness, stretchability, and self-healing ability on a single hydrogel has been a challenge and is a highly desired development for various applications including electronic skin, wound dressings, and wearable devices. In this study, a novel hydrogel was synthesized by incorporating polydopamine-coated talc (PDA-talc) nanoflakes into a polyacrylamide (PAM) hydrogel inspired by the natural mussel adhesive mechanism. Dopamine molecules were intercalated into talc and oxidized, which enhanced the dispersion of talc and preserved catechol groups in the hydrogel. The resulting dopamine-talc-PAM (DTPAM) hydrogel showed a remarkable stretchability, with over 1000% extension and a recovery rate over 99%. It also displayed strong adhesiveness to various substrates, including human skin, and the adhesion strength surpassed that of commercial double-sided tape and glue sticks, even as the hydrogel dehydrated over time. Moreover, the DTPAM hydrogel could rapidly self-heal and regain its mechanical properties without needing any external stimuli. It showed excellent biocompatibility and improved cell affinity to human fibroblasts compared to the PAM hydrogel. When used as a strain sensor, the DTPAM hydrogel showed high sensitivity, with a gauge factor of 0.693 at 1000% strain, and was capable of monitoring various human motions such as the bending of a finger, knee, or elbow and taking a deep breath. Therefore, this hydrogel displays favorable attributes and is highly suitable for use in human-friendly biological devices.
0

Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding

Tairong Kuang et al.Apr 29, 2016
Lightweight conductive polymer composites (CPCs) have been considered as the most promising alternatives to metal-based shields for electromagnetic interference (EMI) shielding application but still face non-degradation issues. We report a facile, inexpensive and green method to implement lightweight biodegradable poly (l-lactic acid) (PLLA)-multiwalled carbon nanotubes (MWCNTs) nanocomposite foams using a combinatorial technology of pressure-induced flow (PIF) processing and supercritical carbon dioxide (Sc–CO2) foaming. Such low-density (∼0.3 g/cm3), low thickness (∼2.5 mm), high compressive strength (∼54 MPa g−1 cm3)) and highly conductive (∼3.4 S m−1) PLLA-MWCNT nanocomposite foams were first reported as an EMI shielding material: it presents high performance EMI shielding with a remarkable effectiveness and a corresponding average specific EMI SE of ∼23 dB and ∼77 dB g−1 cm3, respectively, with less reflection in the measured X-band frequency region. Considering the simple, low-cost and eco-friendly fabrication process, the lightweight, high-strength and highly conductive biodegradable polymer composite foams are expected to be used as high-performance EMI shielding materials in areas such as electronics, automobiles and packaging.
0

Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures

Jiangnan Huang et al.Aug 30, 2017
Fibrillar and particulate structure magnetic carbons (MCFs and MCPs) were prepared from the same precursor (polyacrylonitrile and Fe(NO3)3·9H2O) by using a different method, displaying a significant morphology dependence on wastewater treatment. TEM, SEM, XPS, TGA, etc. were systematically carried out to characterize the carbon samples to verify the morphology difference between these two kinds of carbon adsorbents. The results demonstrated that, along with the increase of the Fe(NO3)3·9H2O loading in the precursor from 10 to 40 wt %, the fibrillar nanoadsorbents displayed an improved activity from 12.6% to 51.4% Cr(VI) removal percentage with the initial Cr(VI) concentration at 4 mg/L. For the maximum removal capacity, the fibrillar sample (MCFs-40) demonstrated 3 times higher removing capacity (43.17 mg/g) than that of particulate nanoadsorbents (MCPs-40, 15.88 mg/g) for the Cr(VI) removal with pH at 1, demonstrating that the fibrillar sample was more favorable for the wastewater treatment than particulate sample. This enhanced removal was mainly attributed to higher specific surface area of the fibrillar sample, leading to more active sites for the adsorption of Cr(VI) and produced Cr(III) ions. The chemical adsorption of Cr(VI) ions over two kinds of adsorbents were disclosed in this removal process. There was a good stability of 5 recycles for the Cr(VI) removal in the neutral solution over MCFs-40 (about 1.4 mg/g) and MCPs-40 (about 0.41 mg/g) with initial Cr(VI) concentration at 4 mg/L. This work can provide an understanding for the rational design of adsorbent in wastewater treatment.
0
Citation279
0
Save
0

Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine

Jiaqi Cheng et al.Mar 2, 2020
A new type of deacetylated cellulose acetate (DA)@polydopamine (PDA) composite nanofiber membrane was fabricated by electrospinning and surface modification. The membrane was applied as a highly efficient adsorbent for removing methylene blue (MB) from an aqueous solution. The morphology, surface chemistry, surface wettability, and effects of operating conditions on MB adsorption ability, as well as the equilibrium, kinetics, thermodynamics, and mechanism of adsorption, were systematically studied. The results demonstrated that a uniform PDA coating layer was successfully developed on the surface of DA nanofibers. The adsorption capacity of the DA@PDA nanofiber membrane reached up to 88.2 mg/g at a temperature of 25 °C and a pH of 6.5 after adsorption for 30 h, which is about 8.6 times higher than that of DA nanofibers. The experimental results showed that the adsorption behavior of DA@PDA composite nanofibers followed the Weber's intraparticle diffusion model, pseudo-second-order model, and Langmuir isothermal model. A thermodynamic analysis indicated that endothermic, spontaneous, and physisorption processes occurred. Based on the experimental results, the adsorption mechanism of DA@PDA composite nanofibers was also demonstrated.
0

Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery

Zhixiang Cui et al.Jun 2, 2017
Abstract The drug‐loaded polyvinyl alcohol (PVA)/chitosan (CS) composite nanofibers intended to be used as matrix for transdermal drug delivery were fabricated by electrospinning, and then crosslinked through glulataraldehyde (GA). The morphology, chemical structure, thermal behavior, mechanical properties, hydrophilicity and drug release properties of drug‐loaded PVA/CS composite nanofibers before and after crosslinking were characterized. The results showed that the morphology of PVA/CS composite nanofibers was not been destroyed in both crosslinking and in vitro drug release process. The Young's modulus, tensile strength, thermal properties and hydrophobicity of crosslinked PVA/CS composite nanofibers significantly increased in comparison with those of PVA/CS (without crosslinking) due to the formation of crosslinking network structure. In vitro release studies showed that crosslinked PVA/CS composite nanofibers had lower drug release rate and smaller amount of drug burst release than that of PVA/CS. According to release exponent “ n ”, the release of ampicillin sodium from crosslinked PVA/CS composite nanofibers fit to the Fickian diffusion mechanism. Those results demonstrate the potential utilization of crosslinked PVA/CS composite nanofibers as a transdermal drug delivery system.
0

Facile fabrication of lightweight and high expanded TPU/PBS bead blend foam with segregated microcellular network for reduced shrinkage and enhanced interface bonding

Fengkun Sun et al.Jun 15, 2024
The emergence of expanded thermoplastic polyurethane foam beads (ETPU) has expanded the application range of polymer foam materials. However, most of the prepared bead foam products suffer from high shrinkage rate, high density, and poor interfacial bonding, severely affecting the mechanical stability and lightweighting of the products. Herein, this study constructed thermoplastic polyurethane/polybutylene succinate (TPU/PBS) bead blend foams with a segregated microcellular network structure (SMNS) for the first time, where the TPU/PBS continuous phase formed the SMNS and the bead phase was consisted of TPU foam beads. The results showed good interfacial bonding between the continuous and bead phases. By adding PBS to the continuous phase, the shrinkage percentage of TPU/PBS bead blend foam decreased from 79.19% to 67.31%, reduced by 15.0%. In addition, the foam expansion ratio gradually decreased with increasing PBS content, dropping from 12.07 to 9.03. Moreover, TPU/PBS bead blend foams exhibited good energy absorption and mechanical stability without sacrificing thermal insulation performance. This work effectively reduced the shrinkage of TPU based foam materials, offering a simple and economical solution for the preparation of dimensionally stable, well-interfaced, and lightweight polymer foams.
Load More