Magnetic Resonance (MR) parameters mapping in muscle Magnetic Resonance Imaging (mMRI) is predominantly performed using pattern recognition-based algorithms, which are characterised by high computational costs and scalability issues in the context of multi-parametric mapping. Deep Learning (DL) has been demonstrated to be a robust and efficient method for rapid MR parameters mapping. However, its application in mMRI domain to investigate Neuromuscular Disorders (NMDs) has not yet been explored. In addition, data-driven DL models suffered in interpretation and explainability of the learning process. We developed a Physics Informed Neural Network called Myo-Regressor Deep Informed Neural NetwOrk (Myo-DINO) for efficient and explainable Fat Fraction (FF), water-T