JR
Jerome Rotter
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
24
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
0

A protein risk score for all-cause and respiratory-specific mortality in non-Hispanic white and African American individuals who smoke

Matthew Moll et al.Sep 4, 2024
Abstract Protein biomarkers are associated with mortality in cardiovascular disease, but their effect on predicting respiratory and all-cause mortality is not clear. We tested whether a protein risk score (protRS) can improve prediction of all-cause mortality over clinical risk factors in smokers. We utilized smoking-enriched (COPDGene, LSC, SPIROMICS) and general population-based (MESA) cohorts with SomaScan proteomic and mortality data. We split COPDGene into training and testing sets (50:50) and developed a protRS based on respiratory mortality effect size and parsimony. We tested multivariable associations of the protRS with all-cause, respiratory, and cardiovascular mortality, and performed meta-analysis, area-under-the-curve (AUC), and network analyses. We included 2232 participants. In COPDGene, a penalized regression-based protRS was most highly associated with respiratory mortality (OR 9.2) and parsimonious (15 proteins). This protRS was associated with all-cause mortality (random effects HR 1.79 [95% CI 1.31–2.43]). Adding the protRS to clinical covariates improved all-cause mortality prediction in COPDGene (AUC 0.87 vs 0.82) and SPIROMICS (0.74 vs 0.6), but not in LSC and MESA. Protein–protein interaction network analyses implicate cytokine signaling, innate immune responses, and extracellular matrix turnover. A blood-based protein risk score predicts all-cause and respiratory mortality, identifies potential drivers of mortality, and demonstrates heterogeneity in effects amongst cohorts.
0

Discovering patterns of pleiotropy in genome-wide association studies

Jianan Zhana et al.Feb 28, 2018
Genome-wide association studies have had great success in identifying human genetic variants associated with disease, disease risk factors, and other biomedical phenotypes. Many variants are associated with multiple traits, even after correction for trait-trait correlation. Discovering subsets of variants associated with a shared subset of phenotypes could help reveal disease mechanisms, suggest new therapeutic options, and increase the power to detect additional variants with similar pattern of associations. Here we introduce two methods based on a Bayesian framework, SNP And Pleiotropic PHenotype Organization (SAPPHO), one modeling independent phenotypes (SAPPHO-I) and the other incorporating a full phenotype covariance structure (SAPPHO-C). These two methods learn patterns of pleiotropy from genotype and phenotype data, using identified associations to discover additional associations with shared patterns. The SAPPHO methods, along with other recent approaches for pleiotropic association tests, were assessed using data from the Atherosclerotic Risk in Communities (ARIC) study of 8,000 individuals, whose gold-standard associations were provided by meta-analysis of 40,000 to 100,000 individuals from the CHARGE consortium. Using power to detect gold-standard associations at genome-wide significance (0.05 family-wise error rate) as a metric, SAPPHO performed best. The SAPPHO methods were also uniquely able to select the most significant variants in a parsimonious model, excluding other less likely variants within a linkage disequilibrium block. For meta-analysis, the SAPPHO methods implement summary modes that use sufficient statistics rather than full phenotype and genotype data. Meta-analysis applied to CHARGE detected 16 additional associations to the gold-standard loci, as well as 124 novel loci, at 0.05 false discovery rate. Reasons for the superior performance were explored by performing simulations over a range of scenarios describing different genetic architectures. With SAPPHO we were able to learn genetic structures that were hidden using the traditional univariate tests.