xL
xiang Li
Author with expertise in Deep Learning in Computer Vision and Image Recognition
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
1
(0% Open Access)
Cited by:
0
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

VSLAM based on deep learning in low-textured scenes

Qiguang Zhu et al.Sep 17, 2024
Abstract Traditional Visual Simultaneous Localization and Mapping (VSLAM) algorithms often suffer from the low positioning accuracy and robustness of the traditional feature extraction methods. These methods typically require environments with clear features, perform poorly or even fail in low-textured scenes. To solve this problem, we propose an RGB-D VSLAM algorithm that integrates a deep learning feature extraction network. First, to solve the problem in which sufficient feature points cannot be extracted, the proposed algorithm uses the R2D2 feature extraction network to extract keypoints and generate descriptors. We also perform lightweight optimization on the R2D2 network, ensuring accuracy while doubling the inference speed. Subsequently, we employ the L2 distance to measure the distance between descriptors, thereby enhancing the accuracy of keypoint matching. Ultimately, we add a dense mapping thread to obtain a dense 3D point map generated by the RGB-D information and poses of the keyframes. The experimental results on the TUM dataset show that the average absolute trajectory error is reduced by 59% and the relative trajectory error is reduced by 56%. The results demonstrate that our algorithm significantly improves localization accuracy and system robustness in low-textured environments.&#xD;