HZ
Hangtian Zhu
Author with expertise in Thermoelectric Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
2,083
h-index:
37
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Advances in thermoelectrics

Jun Mao et al.Apr 3, 2018
Thermoelectric generators, capable of directly converting heat into electricity, hold great promise for tackling the ever-increasing energy sustainability issue. The thermoelectric energy conversion efficiency is heavily dependent upon the materials’ performance that is quantified by the dimensionless figure-of-merit (ZT). Therefore, the central issue in the research of thermoelectric materials lies in continuously boosting the ZT value. Although thermoelectric effects were discovered in the nineteenth century, it was only until the 1950s when classic materials like Bi2Te3 and PbTe were developed and basic science of thermoelectrics was established. However, the research of thermoelectrics did not take a smooth path but a rather tortuous one with ups and downs. After hiatus in the 1970s and 1980s, relentless efforts starting from the 1990s were devoted to understanding the transport and coupling of electrons and phonons, identifying strategies for improving the thermoelectric performance of existing materials, and discovering new promising compounds. Rewardingly, substantial improvements in materials’ performance have been achieved that broke the ZT limit of unity. Meanwhile, advancements in fundamental understanding related to thermoelectrics have also been made. In this Review, recent advances in the research of thermoelectric materials are overviewed. Herein, strategies for improving and decoupling the individual thermoelectric parameters are first reviewed, together with a discussion on open questions and distinctly different opinions. Recent advancements on a number of good thermoelectric materials are highlighted and several newly discovered promising compounds are discussed. Existing challenges in the research of thermoelectric materials are outlined and an outlook for the future thermoelectrics research is presented. The paper concludes with a discussion of topics in other fields but related to thermoelectricity.
0

Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping

Zihang Liu et al.May 7, 2018
Germanium telluride (GeTe)-based materials, which display intriguing functionalities, have been intensively studied from both fundamental and technological perspectives. As a thermoelectric material, though, the phase transition in GeTe from a rhombohedral structure to a cubic structure at ∼700 K is a major obstacle impeding applications for energy harvesting. In this work, we discovered that the phase-transition temperature can be suppressed to below 300 K by a simple Bi and Mn codoping, resulting in the high performance of cubic GeTe from 300 to 773 K. Bi doping on the Ge site was found to reduce the hole concentration and thus to enhance the thermoelectric properties. Mn alloying on the Ge site simultaneously increased the hole effective mass and the Seebeck coefficient through modification of the valence bands. With the Bi and Mn codoping, the lattice thermal conductivity was also largely reduced due to the strong point-defect scattering for phonons, resulting in a peak thermoelectric figure of merit (ZT) of ∼1.5 at 773 K and an average ZT of ∼1.1 from 300 to 773 K in cubic Ge0.81Mn0.15Bi0.04Te. Our results open the door for further studies of this exciting material for thermoelectric and other applications.
0

Realizing high power factor and thermoelectric performance in band engineered AgSbTe2

Yu Zhang et al.Jan 2, 2025
AgSbTe2 is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe2-based thermoelectric devices. In this work, we demonstrate that hole-doped AgSbTe2 with Sn induces the formation of a new impurity band just above the valence band maximum. This approach significantly improves the electrical transport properties, contrary to previous strategies that focused on reducing lattice thermal conductivity. As a result, we achieve a record-high power factor of 27 μWcm−1K−2 and a peak thermoelectric figure of merit zT of 2.5 at 673 K. This exceptional performance is attributed to an increased hole concentration resulting from the formation of the impurity band and a lower formation energy of the defect complexes ( $${V}_{{Ag}}^{1-}$$ + $${{Sn}}_{{Sb}}^{1-}$$ ). Besides, the doped materials exhibit a significantly improved Seebeck coefficient by inhibiting bipolar conductivity and preventing the formation of n-type Ag2Te. Additionally, the optimized AgSbTe2 is used to fabricate a unicouple thermoelectric device that achieves energy conversion efficiencies of up to 12.1% and a high power density of 1.13 Wcm−2. This study provides critical insights and guidance for optimizing the performance of p-type AgSbTe2 in thermoelectric applications. Sn doping enables a breakthrough in p-type AgSbTe2 for thermoelectric applications, achieving a zT of 2.5 and 12.1% device efficiency. The authors reveal an impurity band mechanism, offering a strategy for AgSbTe2 optimization.