XZ
Xiangjun Zheng
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
600
h-index:
27
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes

Xiangjun Zheng et al.Sep 19, 2018
Compared to currently studied metal-based catalysts, metal-free heteroatom-doped carbon catalysts have many advantages including no issues of degradation and contamination from metal dissolution. Relying on single type of doping usually cannot yield optimal electronic and geometric structures favorable for the oxygen reduction reaction (ORR). Herein, heteroatom N, P, and S simultaneously doped graphene-like carbon (NPS-G) was successfully synthesized from onium salts by a facile one-step pyrolysis method. The resulting metal-free NPS-G catalyst with optimized N, P, and S contents exhibits enhanced catalytic activity towards the ORR in alkaline media, relative to any single doping. In particular, this metal-free catalyst shows an encouraging half-wave potential (E1/2 = 0.857 V) comparable to that of metal-based catalysts. It also demonstrates excellent electrochemical stability and methanol tolerance. This catalyst was further studied as a cathode in a primary Zn-air battery, showing exceptional open-circuit voltage (1.372 V) and power density (0.151 W cm−2). The NPS-G cathode delivers a specific capacity of 686 mA h gZn-1 at a current density of 10 mA cm−2 while utilizing 82.2% of the theoretical capacity (835 mA h gZn-1). The origin of high activity associated with various heteroatom dopings is elucidated through X-ray photoelectron spectroscopy analysis and density functional theory studies. The enhanced chemisorption of oxygen species (*OOH, *O and *OH) onto the dopants of the NPS-G catalysts reduces charge transfer resistance and facilitate the ORR. The porous 2D structure also contributes to the increase of active site density and facile mass transport.
0

Uniform Sub-5 nm Crystalline Nickel-Based Heterojunctions for Overall Water Splitting Electrocatalysis

Yuanyuan Wang et al.Jan 17, 2025
Exploring a general method for constructing uniform heterostructures with sub-5 nm crystallites and dense interfaces is crucial yet challenging for advancing water electrocatalysis. Herein, a bottom-up cocrystallization strategy, involving in situ transformation of amorphous Ni–P through gas–solid reactions, is proposed to synthesize a series of nickel-based heterojunctions on carbon cloth (CC). Thereinto, interface-wealthy NiS2-Ni2P/CC with densely packed 3–4 nm crystallites demonstrates superb catalytic performance for both hydrogen and oxygen evolution. The electrolyzer merely requires cell voltages of 1.79 and 1.89 V to propel overall water splitting currents of 200 and 400 mA cm–2, respectively, outperforming the vast majority of reported nickel-based heterojunctions. Theoretical calculations reveal that charge redistribution and electronic structure modulation optimize the hydrogen and oxygen evolution pathways at the NiS2 and Ni2P sides of the interfaces, respectively. Moreover, uniform hybridization with densely distributed heterointerfaces offers abundant active sites for electrocatalysis, pioneering an extendable approach for constructing advanced heterojunction catalysts for green hydrogen production.