MM
Michael Mills
Author with expertise in Stratospheric Chemistry and Climate Change Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(94% Open Access)
Cited by:
7,499
h-index:
58
/
i10-index:
120
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Community Earth System Model Version 2 (CESM2)

Gökhan Danabasoglu et al.Jan 17, 2020
An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the "low-top" (40 km, with limited chemistry) and "high-top" (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low-latitude precipitation and shortwave cloud forcing biases; better representation of the Madden-Julian Oscillation; better El Niño-Southern Oscillation-related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low- and high-top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.
0
Paper
Citation2,296
0
Save
0

Climate Change from 1850 to 2005 Simulated in CESM1(WACCM)

D. Marsh et al.May 9, 2013
Abstract The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM.
0
Paper
Citation1,035
0
Save
0

The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2)

L. Emmons et al.Mar 25, 2020
Abstract The Community Earth System Model version 2 (CESM2) includes a detailed representation of chemistry throughout the atmosphere in the Community Atmosphere Model with chemistry and Whole Atmosphere Community Climate Model configurations. These model configurations use the Model for Ozone and Related chemical Tracers (MOZART) family of chemical mechanisms, covering the troposphere, stratosphere, mesosphere, and lower thermosphere. The new MOZART tropospheric chemistry scheme (T1) has a number of updates over the previous version (MOZART‐4) in CESM, including improvements to the oxidation of isoprene and terpenes, organic nitrate speciation, and aromatic speciation and oxidation and thus improved representation of ozone and secondary organic aerosol precursors. An evaluation of the present‐day simulations of CESM2 being provided for Climate Model Intercomparison Project round 6 (CMIP6) is presented. These simulations, using the anthropogenic and biomass burning emissions from the inventories specified for CMIP6, as well as online calculation of emissions of biogenic compounds, lightning NO, dust, and sea salt, indicate an underestimate of anthropogenic emissions of a variety of compounds, including carbon monoxide and hydrocarbons. The simulation of surface ozone in the southeast United States is improved over previous model versions, largely due to the improved representation of reactive nitrogen and organic nitrate compounds resulting in a lower ozone production rate than in CESM1 but still overestimates observations in summer. The simulation of tropospheric ozone agrees well with ozonesonde observations in many parts of the globe. The comparison of NO x and PAN to aircraft observations indicates the model simulates the nitrogen budget well.
0
Paper
Citation435
0
Save
0

Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM)

Michael Mills et al.Feb 16, 2016
Abstract Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post‐2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO 2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground‐based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite‐based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry‐Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.
0
Paper
Citation306
0
Save
0

The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

Simone Tilmes et al.Oct 12, 2013
[1] The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.
0
Paper
Citation295
0
Save
0

CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project

Simone Tilmes et al.May 23, 2018
This paper describes the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project, which promotes the use of a unique model dataset, performed with the Community Earth System Model, with the Whole Atmosphere Community Climate Model as its atmospheric component [CESM1(WACCM)], to investigate global and regional impacts of geoengineering. The performed simulations were designed to achieve multiple simultaneous climate goals, by strategically placing sulfur injections at four different locations in the stratosphere, unlike many earlier studies that targeted globally averaged surface temperature by placing injections in regions at or around the equator. This advanced approach reduces some of the previously found adverse effects of stratospheric aerosol geoengineering, including uneven cooling between the poles and the equator and shifts in tropical precipitation. The 20-member ensemble increases the ability to distinguish between forced changes and changes due to climate variability in global and regional climate variables in the coupled atmosphere, land, sea ice, and ocean system. We invite the broader community to perform in-depth analyses of climate-related impacts and to identify processes that lead to changes in the climate system as the result of a strategic application of stratospheric aerosol geoengineering.
0
Paper
Citation257
0
Save
0

First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives

Ben Kravitz et al.Nov 6, 2017
We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020–2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.
0
Paper
Citation240
0
Save
Load More