MX
Mai Xu
Author with expertise in Global Prevalence and Treatment of Glaucoma
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(43% Open Access)
Cited by:
1,713
h-index:
47
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs

Hanruo Liu et al.Sep 12, 2019
A deep learning system (DLS) that could automatically detect glaucomatous optic neuropathy (GON) with high sensitivity and specificity could expedite screening for GON.To establish a DLS for detection of GON using retinal fundus images and glaucoma diagnosis with convoluted neural networks (GD-CNN) that has the ability to be generalized across populations.In this cross-sectional study, a DLS for the classification of GON was developed for automated classification of GON using retinal fundus images obtained from the Chinese Glaucoma Study Alliance, the Handan Eye Study, and online databases. The researchers selected 241 032 images were selected as the training data set. The images were entered into the databases on June 9, 2009, obtained on July 11, 2018, and analyses were performed on December 15, 2018. The generalization of the DLS was tested in several validation data sets, which allowed assessment of the DLS in a clinical setting without exclusions, testing against variable image quality based on fundus photographs obtained from websites, evaluation in a population-based study that reflects a natural distribution of patients with glaucoma within the cohort and an additive data set that has a diverse ethnic distribution. An online learning system was established to transfer the trained and validated DLS to generalize the results with fundus images from new sources. To better understand the DLS decision-making process, a prediction visualization test was performed that identified regions of the fundus images utilized by the DLS for diagnosis.Use of a deep learning system.Area under the receiver operating characteristics curve (AUC), sensitivity and specificity for DLS with reference to professional graders.From a total of 274 413 fundus images initially obtained from CGSA, 269 601 images passed initial image quality review and were graded for GON. A total of 241 032 images (definite GON 29 865 [12.4%], probable GON 11 046 [4.6%], unlikely GON 200 121 [83%]) from 68 013 patients were selected using random sampling to train the GD-CNN model. Validation and evaluation of the GD-CNN model was assessed using the remaining 28 569 images from CGSA. The AUC of the GD-CNN model in primary local validation data sets was 0.996 (95% CI, 0.995-0.998), with sensitivity of 96.2% and specificity of 97.7%. The most common reason for both false-negative and false-positive grading by GD-CNN (51 of 119 [46.3%] and 191 of 588 [32.3%]) and manual grading (50 of 113 [44.2%] and 183 of 538 [34.0%]) was pathologic or high myopia.Application of GD-CNN to fundus images from different settings and varying image quality demonstrated a high sensitivity, specificity, and generalizability for detecting GON. These findings suggest that automated DLS could enhance current screening programs in a cost-effective and time-efficient manner.
0

A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection

Liu Li et al.Jul 11, 2019
Glaucoma is one of the leading causes of irreversible vision loss. Many approaches have recently been proposed for automatic glaucoma detection based on fundus images. However, none of the existing approaches can efficiently remove high redundancy in fundus images for glaucoma detection, which may reduce the reliability and accuracy of glaucoma detection. To avoid this disadvantage, this paper proposes an attention-based convolutional neural network (CNN) for glaucoma detection, called AG-CNN. Specifically, we first establish a large-scale attention-based glaucoma (LAG) database, which includes 11 760 fundus images labeled as either positive glaucoma (4878) or negative glaucoma (6882). Among the 11 760 fundus images, the attention maps of 5824 images are further obtained from ophthalmologists through a simulated eye-tracking experiment. Then, a new structure of AG-CNN is designed, including an attention prediction subnet, a pathological area localization subnet, and a glaucoma classification subnet. The attention maps are predicted in the attention prediction subnet to highlight the salient regions for glaucoma detection, under a weakly supervised training manner. In contrast to other attention-based CNN methods, the features are also visualized as the localized pathological area, which are further added in our AG-CNN structure to enhance the glaucoma detection performance. Finally, the experiment results from testing over our LAG database and another public glaucoma database show that the proposed AG-CNN approach significantly advances the state-of-the-art in glaucoma detection.
0

Attention Based Glaucoma Detection: A Large-Scale Database and CNN Model

Liu Li et al.Jun 1, 2019
Recently, the attention mechanism has been successfully applied in convolutional neural networks (CNNs), significantly boosting the performance of many computer vision tasks. Unfortunately, few medical image recognition approaches incorporate the attention mechanism in the CNNs. In particular, there exists high redundancy in fundus images for glaucoma detection, such that the attention mechanism has potential in improving the performance of CNN-based glaucoma detection. This paper proposes an attention-based CNN for glaucoma detection (AG-CNN). Specifically, we first establish a large-scale attention based glaucoma (LAG) database, which includes 5,824 fundus images labeled with either positive glaucoma (2,392) or negative glaucoma (3,432). The attention maps of the ophthalmologists are also collected in LAG database through a simulated eye-tracking experiment. Then, a new structure of AG-CNN is designed, including an attention prediction subnet, a pathological area localization subnet and a glaucoma classification subnet. Different from other attention-based CNN methods, the features are also visualized as the localized pathological area, which can advance the performance of glaucoma detection. Finally, the experiment results show that the proposed AG-CNN approach significantly advances state-of-the-art glaucoma detection.
0

Predicting Head Movement in Panoramic Video: A Deep Reinforcement Learning Approach

Mai Xu et al.Jul 25, 2018
Panoramic video provides immersive and interactive experience by enabling humans to control the field of view (FoV) through head movement (HM). Thus, HM plays a key role in modeling human attention on panoramic video. This paper establishes a database collecting subjects' HM in panoramic video sequences. From this database, we find that the HM data are highly consistent across subjects. Furthermore, we find that deep reinforcement learning (DRL) can be applied to predict HM positions, via maximizing the reward of imitating human HM scanpaths through the agent's actions. Based on our findings, we propose a DRL-based HM prediction (DHP) approach with offline and online versions, called offline-DHP and online-DHP. In offline-DHP, multiple DRL workflows are run to determine potential HM positions at each panoramic frame. Then, a heat map of the potential HM positions, named the HM map, is generated as the output of offline-DHP. In online-DHP, the next HM position of one subject is estimated given the currently observed HM position, which is achieved by developing a DRL algorithm upon the learned offline-DHP model. Finally, the experiments validate that our approach is effective in both offline and online prediction of HM positions for panoramic video, and that the learned offline-DHP model can improve the performance of online-DHP.
0
Paper
Citation204
0
Save
0

MFQE 2.0: A New Approach for Multi-Frame Quality Enhancement on Compressed Video

Zhenyu Guan et al.Oct 2, 2019
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we first develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video.
0
Citation203
0
Save
0

Enhancing Quality for HEVC Compressed Videos

Ren Yang et al.Aug 29, 2018
The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos at the decoder side. To this end, this paper proposes a quality enhancement convolutional neural network (QE-CNN) method that does not require any modification of the encoder to achieve quality enhancement for HEVC. In particular, our QE-CNN method learns QE-CNN-I and QE-CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. The proposed method differs from the existing CNN-based quality enhancement approaches, which only handle intra-coding distortion and are thus not suitable for P/B frames. Our experimental results validate that our QE-CNN method is effective in enhancing quality for both I and P/B frames of HEVC videos. To apply our QE-CNN method in time-constrained scenarios, we further propose a time-constrained quality enhancement optimization (TQEO) scheme. Our TQEO scheme controls the computational time of QE-CNN to meet a target, meanwhile maximizing the quality enhancement. Next, the experimental results demonstrate the effectiveness of our TQEO scheme from the aspects of time control accuracy and quality enhancement under different time constraints. Finally, we design a prototype to implement our TQEO scheme in a real-time scenario.
0

DeepSN-Net: Deep Semi-smooth Newton Driven Network for Blind Image Restoration

Xin Deng et al.Jan 1, 2025
The deep unfolding network represents a promising research avenue in image restoration. However, most current deep unfolding methodologies are anchored in first-order optimization algorithms, which suffer from sluggish convergence speed and unsatisfactory learning efficiency. In this paper, to address this issue, we first formulate an improved second-order semi-smooth Newton (ISN) algorithm, transforming the original nonlinear equations into an optimization problem amenable to network implementation. After that, we propose an innovative network architecture based on the ISN algorithm for blind image restoration, namely DeepSN-Net. To the best of our knowledge, DeepSN-Net is the first successful endeavor to design a second-order deep unfolding network for image restoration, which fills the blank of this area. Furthermore, it offers several distinct advantages: 1) DeepSN-Net provides a unified framework to a variety of image restoration tasks in both synthetic and real-world contexts, without imposing constraints on the degradation conditions. 2) The network architecture is meticulously aligned with the ISN algorithm, ensuring that each module possesses robust physical interpretability. 3) The network exhibits high learning efficiency, superior restoration accuracy and good generalization ability across 11 datasets on three typical restoration tasks. The success of DeepSN-Net on image restoration may ignite many subsequent works centered around the second-order optimization algorithms, which is good for the community.
Load More