NW
Ning Wang
Author with expertise in Catalytic Nanomaterials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(20% Open Access)
Cited by:
1,840
h-index:
35
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation

Ning Wang et al.Jun 2, 2016
Well-dispersed and ultrasmall Pd clusters in nanosized silicalite-1 (MFI) zeolite have been prepared under direct hydrothermal conditions using [Pd(NH2CH2CH2NH2)2]Cl2 as precursor. High-resolution scanning transmission electron microscopy studies indicate that the Pd clusters are encapsulated within the intersectional channels of MFI, and the Pd clusters in adjacent channels visually aggregate, forming nanoparticles (NPs) of ∼1.8 nm. The resultant catalysts show an excellent activity and highly efficient H2 generation toward the complete decomposition of formic acid (FA) under mild conditions. Notably, thanks to the further reduced Pd NP size (∼1.5 nm) and the additionally introduced basic sites, the Pd/S-1-in-K catalyst affords turnover frequency values up to 856 h(-1) at 25 °C and 3027 h(-1) at 50 °C. The easy in situ confinement synthesis of metal clusters in zeolites endows the catalysts with superior catalytic activities, excellent recyclability, and high thermal stability, thus opening new perspectives for the practical application of FA as a viable and effective H2 storage material for use in fuel cells.
0
0

Efficient One‐Pot Cellulosic Ethanol Production Over PdZn@Silicalite‐1 Catalysts with Metal‐Acid “Restricted Adjacency” Structures

Yuandong Cui et al.Jan 16, 2025
Abstract Direct hydrogenolysis of cellulose to produce ethanol is a promising way to efficiently utilize biomass resources, contributing significantly to low‐carbon energy development and greenhouse gas reduction. However, this process is challenging due to intricate cascading reactions. In this study, PdZn@S‐1 catalysts featuring metal‐acid “restricted adjacency” structures for direct cellulose conversion are developed. This unique structure allows acidic sites and metal nanoparticles to be in close proximity in a microscopic space, leading to changes in the electronic states of the metal sites, and an increase in the number of acidic sites. This configuration fosters synergistic and balanced interaction between the two types of sites. As a result, the PdZn 0.5 @S‐1 catalyst demonstrates exceptional performance, achieving an ethanol yield of 69.2% at 245 °C and 4.5 MPa H 2 within 4 h. The remarkable catalytic activity and selectivity are attributed to the formation of Lewis acid sites through Pd δ+ ─O(H)─Si coordination, which facilitates the cleavage of C─C bonds, while the adjacent PdZn alloy provides an effective site for the hydrogenation of C─O bonds. This work introduces a novel approach by successfully integrating metal@zeolite catalysts into the catalytic conversion of biomass macromolecules, offering new insights for the direct utilization of biomass resources.