SS
Shreetu Shrestha
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,957
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Detection of X-ray photons by solution-processed lead halide perovskites

Sergii Yakunin et al.May 25, 2015
The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors made from conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near-infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted a great deal of attention. Here, we demonstrate a possibility to use such inexpensive semiconductors for the sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution-processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 μC mGyair−1 cm−3) and responsivity (1.9 × 104 carriers/photon), which are commensurate with those obtained by the current solid-state technology. Solid-state X-ray detectors have enabled real-time diagnostics as well as reduced patient dose. Now researchers have shown that potentially inexpensive perovskites can be used for efficient X-ray imaging.
0

Giant Rashba Splitting in CH3NH3PbBr3 Organic-Inorganic Perovskite

Daniel Niesner et al.Sep 13, 2016
As they combine decent mobilities with extremely long carrier lifetimes, organic-inorganic perovskites have opened a whole new field in opto\-electronics. Measurements of their underlying electronic structure, however, are still lacking. Using angle-resolved photoelectron spectroscopy, we measure the valence band dispersion of single-crystal CH$_3$NH$_3$PbBr$_3$. The dispersion of the highest energy band is extracted applying a modified leading edge method, which accounts for the particular density of states of organic-inorganic perovskites. The surface Brillouin zone is consistent with bulk-terminated surfaces both in the low-temperature orthorhombic and the high-temperature cubic phase. In the low-temperature phase, we find a ring-shaped valence band maximum with a radius of 0.043 {\AA}$^{-1}$, centered around a 0.16 eV deep local minimum in the dispersion of the valence band at the high-symmetry point. Intense circular dichroism is observed. This dispersion is the result of strong spin-orbit coupling. Spin-orbit coupling is also present in the room-temperature phase. The coupling strength is one of the largest reported so far.
0

Atomically Precise Hexanuclear Ce(IV) Clusters as Functional Fluorescent Nanosensors for Rapid One‐Step Detection of PFAS

Mohamed Hassan et al.May 27, 2024
Abstract The presence of poly‐ and perfluoroalkyl substances (PFAS) in the environment is associated with adverse health effects but measuring PFAS is challenging due to the associated high cost and technical complexities of the analysis. Here, the reactivity of atomically precise metal‐oxo clusters is reported and the foundation for their use is provided as fluorescent nanosensors for PFAS detection. The material comprises crystalline, water soluble, hexanuclear cerium‐oxo clusters [Ce 6 (µ 3 ‐O) 4 (µ 3 ‐OH) 4 ] 12+ decorated with glycine molecules (Ce‐Gly) characterized by fluorescence emission at 353 nm. The Ce‐Gly fluorescence is found sensitive to long chain carboxylated PFAS of CF 3 –(CF 2 ) n –, where n ≥ 6, such as perfluorooctanoic, perfluorononanoic and perfluorodecanoic acids. This unique reactivity leads to a change in the emission spectra in a concentration dependent manner, enabling PFAS detection through ligand exchange and aggregation‐induced emission (AIE) enhancement. No significant cross‐reactivity from potentially co‐existing species, including sulfonated PFAS, octanoic and dodecanoic acids, humic acid, and inorganic ions is observed. With an optimal concentration of 3.3 µg mL −1 Ce‐Gly, the method demonstrated detection limits of 0.24 ppb for PFOA and 0.4 ppb for PFNA. These findings highlight the potential of fluorescence‐based detection strategies utilizing nanoscale probes such as Ce‐Gly as fluorescent probes and nanosensors for PFAS.