QP
Qibing Pei
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(27% Open Access)
Cited by:
16,671
h-index:
86
/
i10-index:
250
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene

Qibing Pei et al.Jan 1, 1996
ADVERTISEMENT RETURN TO ISSUEPREVCommunicationNEXTEfficient Photoluminescence and Electroluminescence from a Soluble PolyfluoreneQibing Pei and YangView Author Information UNIAX Corporation, 6780 Cortona Drive Santa Barbara, California 93117 Cite this: J. Am. Chem. Soc. 1996, 118, 31, 7416–7417Publication Date (Web):August 7, 1996Publication History Received7 May 1996Published online7 August 1996Published inissue 1 January 1996https://pubs.acs.org/doi/10.1021/ja9615233https://doi.org/10.1021/ja9615233rapid-communicationACS PublicationsCopyright © 1996 American Chemical SocietyRequest reuse permissionsArticle Views5922Altmetric-Citations737LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose SUBJECTS:Conjugated polymers,Degradation,Light,Polymers,Thin films Get e-Alerts
0

Large-area display textiles integrated with functional systems

Xiang Shi et al.Mar 10, 2021
Displays are basic building blocks of modern electronics1,2. Integrating displays into textiles offers exciting opportunities for smart electronic textiles—the ultimate goal of wearable technology, poised to change the way in which we interact with electronic devices3–6. Display textiles serve to bridge human–machine interactions7–9, offering, for instance, a real-time communication tool for individuals with voice or speech difficulties. Electronic textiles capable of communicating10, sensing11,12 and supplying electricity13,14 have been reported previously. However, textiles with functional, large-area displays have not yet been achieved, because it is challenging to obtain small illuminating units that are both durable and easy to assemble over a wide area. Here we report a 6-metre-long, 25-centimetre-wide display textile containing 5 × 105 electroluminescent units spaced approximately 800 micrometres apart. Weaving conductive weft and luminescent warp fibres forms micrometre-scale electroluminescent units at the weft–warp contact points. The brightness between electroluminescent units deviates by less than 8 per cent and remains stable even when the textile is bent, stretched or pressed. Our display textile is flexible and breathable and withstands repeated machine-washing, making it suitable for practical applications. We show that an integrated textile system consisting of display, keyboard and power supply can serve as a communication tool, demonstrating the system’s potential within the ‘internet of things’ in various areas, including healthcare. Our approach unifies the fabrication and function of electronic devices with textiles, and we expect that woven-fibre materials will shape the next generation of electronics. A large electronic display textile that is flexible, breathable and withstands repeated machine-washing is integrated with a keyboard and power supply to create a wearable, durable communication tool.
0

High-field deformation of elastomeric dielectrics for actuators

Ron Pelrine et al.Nov 1, 2000
This paper investigates the use of elastomeric dielectric materials with compliant electrodes as a means of actuation. When a voltage is applied to the electrodes, the elastomeric films expand in area and compresses in thickness. The strain response to applied electric fields was measured for a variety of elastomers. A nonlinear, high-strain, Mooney–Rivlin model was used to determine the expected strain response for a given applied field pressure. Comparing this analytical result to with experimentally measured strains, we determined that the electrostatic forces between the free charges on the electrodes are responsible for the observed response. Silicone polymers have produced the best combination of high strain and energy density, with thickness strains up to 41% and elastic energy densities up to 0.2 MJ/m3. Response times of 2 ms have been experimentally measured. This paper also reports recent progress in making highly compliant electrodes. We have shown, for example, that gold traces fabricated in a zig-zag pattern on silicone retain their conductivity when stretched up to 80%, compared to 1–5% when fabricated as a uniform two-dimensional electrodelayer. Optimal loading of dielectric elastomers can have a significant impact on performance: and the paper describes techniques which that can increase output up to a factor of 5 compared to neutral loading conditions. Lastly, the paper briefly discusses the performance of various actuators that use dielectric elastomer materials. The technology appears to be well-suited to a variety of small-scale actuator applications.
0

Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes

Jiajie Liang et al.Jan 28, 2014
Transparent conductive electrodes with high surface conductivity, high transmittance in the visible wavelength range, and mechanical compliance are one of the major challenges in the fabrication of stretchable optoelectronic devices. We report the preparation of a transparent conductive electrode (TCE) based on a silver nanowire (AgNW) percolation network modified with graphene oxide (GO). The monatomic thickness, mechanical flexibility, and strong bonding with AgNWs enable the GO sheets to wrap around and solder the AgNW junctions and thus dramatically reduce the inter-nanowire contact resistance without heat treatment or high force pressing. The GO-soldered AgNW network has a figure-of-merit sheet resistance of 14 ohm/sq with 88% transmittance at 550 nm. Its storage stability is improved compared to a conventional high-temperature annealed AgNW network. The GO-soldered AgNW network on polyethylene terephthalate films was processed from solutions using a drawdown machine at room temperature. When bent to 4 mm radius, its sheet resistance was increased by only 2–3% after 12 000 bending cycles. GO solder can also improve the stretchability of the AgNW network. Composite TCE fabricated by inlaying a GO-soldered AgNW network in the surface layer of polyurethane acrylate films is stretchable, by greater than 100% linear strain without losing electrical conductivity. Fully stretchable white polymer light-emitting diodes (PLEDs) were fabricated for the first time, employing the stretchable TCE as both the anode and cathode. The PLED can survive after 100 stretching cycles between 0 and 40% strain and can be stretched up to 130% linear strain at room temperature.
Load More