TE
T. Erben
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
7,189
h-index:
68
/
i10-index:
198
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

H. Hildebrandt et al.Oct 31, 2016
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find |$S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.745\pm 0.039$|⁠. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl.
0

KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints

Catherine Heymans et al.Nov 24, 2020
We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS) and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-degree Field Lensing Survey. This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter S 8 = σ 8 √(Ω m /0.3) = 0.766 −0.014 +0.020 , which has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck . The recovered S 8 amplitude is low, however, by 8.3 ± 2.6% relative to Planck . This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the S 8 -difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, σ 8 . We quantify the level of agreement between the cosmic microwave background and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between ∼3 σ , when considering the offset in S 8 , and ∼2 σ , when considering the full multi-dimensional parameter space.