GC
Glen Cass
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(17% Open Access)
Cited by:
18,653
h-index:
90
/
i10-index:
198
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks

Wolfgang Rogge et al.Apr 1, 1993
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTSources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucksWolfgang F. Rogge, Lynn M. Hildemann, Monica A. Mazurek, Glen R. Cass, and Bernd R. T. SimoneitCite this: Environ. Sci. Technol. 1993, 27, 4, 636–651Publication Date (Print):April 1, 1993Publication History Published online1 May 2002Published inissue 1 April 1993https://pubs.acs.org/doi/10.1021/es00041a007https://doi.org/10.1021/es00041a007research-articleACS PublicationsRequest reuse permissionsArticle Views2744Altmetric-Citations1126LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
0

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo‐Asian haze

V. Ramanathan et al.Nov 1, 2001
Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo‐Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one‐ and four‐dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long‐range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single‐scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo‐Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (‐20±4 W m −2 ) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.
0
Paper
Citation1,407
0
Save
0

Source apportionment of airborne particulate matter using organic compounds as tracers

James Schauer et al.Nov 1, 1996
A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
0
Paper
Citation1,391
0
Save
0

Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic Compounds from Fireplace Combustion of Wood

James Schauer et al.Mar 24, 2001
Organic compound emission rates for volatile organic compounds (VOC), gas-phase semivolatile organic compounds, and particle-phase organic compounds are measured from residential fireplace combustion of wood. Firewood from a conifer tree (pine) and from two deciduous trees (oak and eucalyptus) is burned to determine organic compound emissions profiles for each wood type including the distribution of the alkanes, alkenes, aromatics, polycyclic aromatic hydrocarbons (PAH), phenol and substituted phenols, guaiacol and substituted guaiacols, syringol and substituted syringols, carbonyls, alkanoic acids, resin acids, and levoglucosan. Levoglucosan is the major constituent in the fine particulate emissions from all three wood types, contributing 18−30% of the fine particulate organic compound emissions. Guaiacol (2-methoxyphenol), and guaiacols with additional substituents at position 4 on the molecule, and resin acids are emitted in significant quantities from pine wood combustion. Syringol (2,6-dimethoxyphenol) and syringols with additional substituents at position 4 on the molecule are emitted in large amounts from oak and eucalyptus firewood combustion, but these compounds are not detected in the emissions from pine wood combustion. Syringol and most of the substituted syringols are found to be semivolatile compounds that are present in both the gas and particle phases, but two substituted syringols that have not been previously quantified in wood smoke emissions, propionylsyringol and butyrylsyringol, are found exclusively in the particle phase and can be used to help trace hardwood smoke particles in the atmosphere. Benzene, ethene, and acetylene are often used as tracers for motor vehicle exhaust in the urban atmosphere. The contribution of wood smoke to the ambient concentrations of benzene, ethene, and acetylene could lead to an overestimate of the contribution of motor vehicle tailpipe exhaust to atmospheric VOC concentrations.
0

Measurement of Emissions from Air Pollution Sources. 5. C1−C32Organic Compounds from Gasoline-Powered Motor Vehicles

James Schauer et al.Feb 14, 2002
Gas- and particle-phase organic compounds present in the tailpipe emissions from an in-use fleet of gasoline-powered automobiles and light-duty trucks were quantified using a two-stage dilution source sampling system. The vehicles were driven through the cold-start Federal Test Procedure (FTP) urban driving cycle on a transient dynamometer. Emission rates of 66 volatile hydrocarbons, 96 semi-volatile and particle-phase organic compounds, 27 carbonyls, and fine particle mass and chemical composition were quantified. Six isoprenoids and two tricyclic terpanes, which are quantified using new source sampling techniques for semi-volatile organic compounds, have been identified as potential tracers for gasoline-powered motor vehicle emissions. A composite of the commercially distributed California Phase II Reformulated Gasoline used in these tests was analyzed by several analytical methods to quantify the gasoline composition, including some organic compounds that are found in the atmosphere as semi-volatile and particle-phase organic compounds. These results allow a direct comparison of the semi-volatile and particle-phase organic compound emissions from gasoline-powered motor vehicles to the gasoline burned by these vehicles. The distribution of n-alkanes and isoprenoids emitted from the catalyst-equipped gasoline-powered vehicles is the same as the distribution of these compounds found in the gasoline used, whereas the distribution of these compounds in the emissions from the noncatalyst vehicles is very different from the distribution in the fuel. In contrast, the distribution of the polycyclic aromatic hydrocarbons and their methylated homologues in the gasoline is significantly different from the distribution of the PAH in the tailpipe emissions from both types of vehicles.
0

Measurement of Emissions from Air Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks

James Schauer et al.Apr 13, 1999
Gas- and particle-phase tailpipe emissions from late-model medium duty diesel trucks are quantified using a two-stage dilution source sampling system. The diesel trucks are driven through the hot-start Federal Test Procedure (FTP) urban driving cycle on a transient chassis dynamometer. Emission rates of 52 gas-phase volatile hydrocarbons, 67 semivolatile and 28 particle-phase organic compounds, and 26 carbonyls are quantified along with fine particle mass and chemical composition. When all C1−C13 carbonyls are combined, they account for 60% of the gas-phase organic compound mass emissions. Fine particulate matter emission rates and chemical composition are quantified simultaneously by two methods: a denuder/filter/PUF sampler and a traditional filter sampler. Both sampling techniques yield the same elemental carbon emission rate of 56 mg km-1 driven, but the particulate organic carbon emission rate determined by the denuder-based sampling technique is found to be 35% lower than the organic carbon mass collected by the traditional filter-based sampling technique due to a positive vapor-phase sorption artifact that affects the traditional filter sampling technique. The distribution of organic compounds in the diesel fuel used in this study is compared to the distribution of these compounds in the vehicle exhaust. Significant enrichment in the ratio of unsubstituted polycyclic aromatic hydrocarbons (PAH) to their methyl- and dimethyl-substituted homologues is observed in the tailpipe emissions relative to the fuel. Isoprenoids and tricyclic terpanes are quantified in the semivolatile organics emitted from diesel vehicles. When used in conjunction with data on the hopanes, steranes, and elemental carbon emitted, the isoprenoids and the tricyclic terpanes may help trace the presence of diesel exhaust in atmospheric samples.
0

Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation

Wolfgang Rogge et al.Jun 1, 1993
Organic aerosol samples collected systematically throughout a complete annual cycle at four urban sites in southern California are examined by high-resolution gas chromatography and gas chromatography/mass spectrometry. More than 80 organic compounds are quantified and their seasonal ambient concentration patterns are discussed. Primary organic aerosol constituents are readily identified, revealing an annual pattern, with high winter and low summer concentrations. In contrast, aliphatic dicarboxylic acids of possible secondary origin show a reverse pattern, with high concentrations in late spring/early summer. Concentration patterns similar to the secondary dicarboxylic acids also are found for aromatic polycarboxylic acids, certain lower molecular weight n-alkanoic acids, a nonanal and other compounds. Molecular markers characteristic of woodsmoke are identified, and their concentrations change by season in close agreement with prior estimates of the seasonal use of wood as a fuel. This data set can be used to evaluate the predictions of mathematical models for the atmospheric transport and reaction of organic aerosol constituents defined at a molecular level.
0
Paper
Citation904
0
Save
0

Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks

Wolfgang Rogge et al.Sep 1, 1993
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTSources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinksWolfgang F. Rogge, Lynn M. Hildemann, Monica A. Mazurek, Glen R. Cass, and Bernd R. T. SimoneitCite this: Environ. Sci. Technol. 1993, 27, 9, 1892–1904Publication Date (Print):September 1, 1993Publication History Published online1 May 2002Published inissue 1 September 1993https://pubs.acs.org/doi/10.1021/es00046a019https://doi.org/10.1021/es00046a019research-articleACS PublicationsRequest reuse permissionsArticle Views3061Altmetric-Citations600LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
Load More