TB
Terje Berntsen
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(87% Open Access)
Cited by:
17,230
h-index:
72
/
i10-index:
164
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bounding the role of black carbon in the climate system: A scientific assessment

Tami Bond et al.Apr 22, 2013
Abstract Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black‐carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom‐up inventory methods are 7500 Gg yr −1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial‐era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m −2 with 90% uncertainty bounds of (+0.08, +1.27) W m −2 . Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m −2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial‐era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m −2 with 90% uncertainty bounds of +0.17 to +2.1 W m −2 . Thus, there is a very high probability that black carbon emissions, independent of co‐emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m −2 , is the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate. Climate forcings from co‐emitted species are estimated and used in the framework described herein. When the principal effects of short‐lived co‐emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy‐related sources (fossil fuel and biofuel) have an industrial‐era climate forcing of +0.22 (−0.50 to +1.08) W m −2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short‐lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial‐era climate forcing by all short‐lived species from black‐carbon‐rich sources becomes slightly negative (−0.06 W m −2 with 90% uncertainty bounds of −1.45 to +1.29 W m −2 ). The uncertainties in net climate forcing from black‐carbon‐rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co‐emitted organic carbon. In prioritizing potential black‐carbon mitigation actions, non‐science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near‐term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black‐carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
0
Paper
Citation5,891
0
Save
0

Analysis and quantification of the diversities of aerosol life cycles within AeroCom

C. Textor et al.May 29, 2006
Abstract. Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities) for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and other dry deposition processes. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for the individual species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times.
0
Paper
Citation1,340
0
Save
0

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

Gunnar Myhre et al.Feb 19, 2013
Abstract. We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm−2, with a mean of −0.27 Wm−2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm−2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
0
Paper
Citation895
0
Save
0

Transport impacts on atmosphere and climate: Shipping

Veronika Eyring et al.May 20, 2009
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.
0
Paper
Citation891
0
Save
0

An AeroCom initial assessment – optical properties in aerosol component modules of global models

Stefan Kinne et al.May 29, 2006
Abstract. The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).
0

Transport impacts on atmosphere and climate: Aviation

David Lee et al.Jun 13, 2009
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NO x ). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m-2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3-10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m-2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2-14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3-4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NO x result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NO x emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a 'hydrogen economy' develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.
0
Paper
Citation711
0
Save
0

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

Michael Schulz et al.Nov 16, 2006
Abstract. Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA) yields a new harmonized estimate for the aerosol direct radiative forcing (RF) under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth). The clear-sky forcing efficiency (forcing per unit optical depth) has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate is present at lower altitude and vice versa. Solar atmospheric forcing within the atmospheric column is estimated at +0.82±0.17 Wm−2. The local annual average maxima of atmospheric forcing exceed +5 Wm−2 confirming the regional character of aerosol impacts on climate. The annual average surface forcing is −1.02±0.23 Wm−2. With the current uncertainties in the modelling of the radiative forcing due to the direct aerosol effect we show here that an estimate from one model is not sufficient but a combination of several model estimates is necessary to provide a mean and to explore the uncertainty.
0
Paper
Citation689
0
Save
0

Evaluation of black carbon estimations in global aerosol models

D. Koch et al.Nov 27, 2009
Abstract. We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.
0
Paper
Citation625
0
Save
0

Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

Michael Gauss et al.May 13, 2003
Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison (“OxComp”) was conducted for the IPCC Third Assessment Report (IPCC‐TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the “SRES” A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global‐mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC‐TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m −2 on a global and annual average. The lower stratosphere contributes an additional 7.5–9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15–0.17 W m −2 . The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global‐mean ozone column change.
0
Paper
Citation562
0
Save
Load More