RG
Roozbeh Ghaffari
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
6,389
h-index:
28
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stretchable silicon nanoribbon electronics for skin prosthesis

Jaemin Kim et al.Dec 9, 2014
Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies. An integrated electronic platform with site-specific sensitivity is highly needed for medical applications. Here, Kim et al.report a stretchable prosthetic skin composed of ultrathin single crystalline silicon nanoribbon array, which can sense strain, pressure and temperature spontaneously.
0

Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials

Suji Choi et al.Jan 18, 2016
Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio‐sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top‐down processing approaches and synthesis‐based bottom‐up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non‐invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies.
0

Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics

Rak-Hwan Kim et al.Oct 17, 2010
Inorganic light-emitting diodes and photodetectors represent important, established technologies for solid-state lighting, digital imaging and many other applications. Eliminating mechanical and geometrical design constraints imposed by the supporting semiconductor wafers can enable alternative uses in areas such as biomedicine and robotics. Here we describe systems that consist of arrays of interconnected, ultrathin inorganic light-emitting diodes and photodetectors configured in mechanically optimized layouts on unusual substrates. Light-emitting sutures, implantable sheets and illuminated plasmonic crystals that are compatible with complete immersion in biofluids illustrate the suitability of these technologies for use in biomedicine. Waterproof optical-proximity-sensor tapes capable of conformal integration on curved surfaces of gloves and thin, refractive-index monitors wrapped on tubing for intravenous delivery systems demonstrate possibilities in robotics and clinical medicine. These and related systems may create important, unconventional opportunities for optoelectronic devices. Flexible electronic devices that can be stretched without losing performance have seen increasing functionality. In particular, the demonstration of light-emitting diodes and photodetectors on flexible electronic substrates now opens the door to applications of flexible optoelectronic sheets in biomedicine and robotics.