JK
Jaemin Kim
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(18% Open Access)
Cited by:
5,661
h-index:
25
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stretchable silicon nanoribbon electronics for skin prosthesis

Jaemin Kim et al.Dec 9, 2014
Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies. An integrated electronic platform with site-specific sensitivity is highly needed for medical applications. Here, Kim et al.report a stretchable prosthetic skin composed of ultrathin single crystalline silicon nanoribbon array, which can sense strain, pressure and temperature spontaneously.
0

Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures

Sumin Lim et al.Nov 14, 2014
An interactive human‐machine interface (iHMI) enables humans to control hardware and collect feedback information. In particular, wearable iHMI systems have attracted tremendous attention owing to their potential for use in personal mobile electronics and the Internet of Things. Although significant progress has been made in the development of iHMI systems, those based on rigid electronics have constraints in terms of wearability, comfortability, signal‐to‐noise ratio (SNR), and aesthetics. Herein the fabrication of a transparent and stretchable iHMI system composed of wearable mechanical sensors and stimulators is reported. The ultrathin and lightweight design of the system allows superior wearability and high SNR. The use of conductive/piezoelectric graphene heterostructures, which consist of poly( l ‐lactic acid), single‐walled carbon nanotubes, and silver nanowires, results in high transparency, excellent performance, and low power consumption as well as mechanical deformability. The control of a robot arm for various motions and the feedback stimulation upon successful executions of commands are demonstrated using the wearable iHMI system.
0

Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array

Changsoon Choi et al.Nov 15, 2017
Soft bioelectronic devices provide new opportunities for next-generation implantable devices owing to their soft mechanical nature that leads to minimal tissue damages and immune responses. However, a soft form of the implantable optoelectronic device for optical sensing and retinal stimulation has not been developed yet because of the bulkiness and rigidity of conventional imaging modules and their composing materials. Here, we describe a high-density and hemispherically curved image sensor array that leverages the atomically thin MoS2-graphene heterostructure and strain-releasing device designs. The hemispherically curved image sensor array exhibits infrared blindness and successfully acquires pixelated optical signals. We corroborate the validity of the proposed soft materials and ultrathin device designs through theoretical modeling and finite element analysis. Then, we propose the ultrathin hemispherically curved image sensor array as a promising imaging element in the soft retinal implant. The CurvIS array is applied as a human eye-inspired soft implantable optoelectronic device that can detect optical signals and apply programmed electrical stimulation to optic nerves with minimum mechanical side effects to the retina.
0

Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes

Ja Koo et al.Aug 24, 2017
With the rapid advances in wearable electronics, the research on carbon-based and/or organic materials and devices has become increasingly important, owing to their advantages in terms of cost, weight, and mechanical deformability. Here, we report an effective material and device design for an integrative wearable cardiac monitor based on carbon nanotube (CNT) electronics and voltage-dependent color-tunable organic light-emitting diodes (CTOLEDs). A p-MOS inverter based on four CNT transistors allows high amplification and thereby successful acquisition of the electrocardiogram (ECG) signals. In the CTOLEDs, an ultrathin exciton block layer of bis[2-(diphenylphosphino)phenyl]ether oxide is used to manipulate the balance of charges between two adjacent emission layers, bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) and bis(2-phenylquinolyl-N,C(2′))iridium(acetylacetonate), which thereby produces different colors with respect to applied voltages. The ultrathin nature of the fabricated devices supports extreme wearability and conformal integration of the sensor on human skin. The wearable CTOLEDs integrated with CNT electronics are used to display human ECG changes in real-time using tunable colors. These materials and device strategies provide opportunities for next generation wearable health indicators.
0

Ultrathin Quantum Dot Display Integrated with Wearable Electronics

Jaemin Kim et al.Aug 21, 2017
An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m-2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data.
0

Multifunctional Wearable System that Integrates Sweat‐Based Sensing and Vital‐Sign Monitoring to Estimate Pre‐/Post‐Exercise Glucose Levels

Yong Hong et al.Oct 10, 2018
Abstract Wearable bioelectronic technologies have made significant progresses in personalized health management through non‐invasive monitoring of health indicators. However, current wearable systems cannot measure biochemical information and physiological signals simultaneously, which limits integrated data analysis and their widespread clinical applications. Here, an integrated multifunctional wearable health management system composed of a disposable sweat‐based glucose sensing strip and a wearable smart band is reported. The integrated system with control software electrochemically analyzes sweat glucose levels and continuously monitors vital signs (i.e., heart rate, blood oxygen saturation level, and physical activity). Different sweat collecting sites and sweat generation methods are tested in short‐ and long‐term studies with multiple human subjects by using the developed wearable system, leading to optimized protocols for health monitoring. By combining sweat glucose data and physiological monitoring data, pre‐ and post‐exercise blood glucose levels and blood glucose changes resulting from physical activities are reliably estimated, providing key information for preventing hypoglycemic shock during intense exercise. The integrated wearable system offers a novel comprehensive personalized health management strategy through combined analysis of key metabolic and physiological health indicators.
0
Paper
Citation194
0
Save
Load More