RN
Robert Nichol
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(100% Open Access)
Cited by:
17,901
h-index:
68
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample

Will Percival et al.Nov 23, 2009
The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)
0

The Three‐Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey

Max Tegmark et al.May 7, 2004
We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loève eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.
0

THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

Stephen Smee et al.Jul 12, 2013
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.
0

THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

Kyle Dawson et al.Dec 6, 2012
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg2 to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Lyα forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyα forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance dA to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate DA(z) and H−1(z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
0

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample

Lauren Anderson et al.Dec 21, 2012
We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance ΛCDM cosmological model, this sample covers an effective volume of 2.2 Gpc3, and represents the largest sample of the Universe ever surveyed at this density, . We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5σ in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7σ. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon DV/rs = 13.67 ± 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance DV (z = 0.57) = 2094 ± 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.
0

GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY

Idit Zehavi et al.Jul 6, 2011
We measure the luminosity and color dependence of galaxy clustering in the SDSS DR7 main galaxy sample, focusing on the projected correlation function w_p(r_p) of volume-limited samples. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a Lambda-CDM cosmology. The amplitude of w_p(r_p) grows slowly with luminosity for L < L_* and increases sharply at higher luminosities, with bias factor b(>L)=1.06+0.23(L/L_*)^{1.12}. At fixed luminosity, redder galaxies have a stronger and steeper w_p(r_p), a trend that runs steadily from the bluest galaxies to the reddest galaxies. The individual luminosity trends for the red and blue galaxy populations are strikingly different. Blue galaxies show a slow but steady increase of w_p(r_p) with luminosity, at all scales. The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4L_*, but the lowest luminosity red galaxies (0.04-0.25 L_*) show very strong clustering on scales r_p < 2 Mpc/h. Most of the observed trends can be naturally understood within the LCDM+HOD framework. The growth of w_p(r_p) with luminosity reflects an overall shift in the halo mass scale, in particular an increase in the minimum host halo mass Mmin. The mass at which a halo has, on average, one satellite galaxy brighter than L is M_1 ~ 17 Mmin(L) over most of the luminosity range. The growth and steepening of w_p(r_p) for redder galaxies reflects the increasing fraction of galaxies that are satellite systems in high mass halos instead of central systems in low mass halos, a trend that is especially marked at low luminosities. Our extensive measurements, provided in tabular form, will allow detailed tests of theoretical models of galaxy formation, a firm grounding of semi-empirical models of the galaxy population, and new cosmological tests.
0

The Luminosity Function of Galaxies in SDSS Commissioning Data

Michael Blanton et al.May 1, 2001
In the course of its commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest redshift samples of galaxies selected from CCD images. Using 11,275 galaxies complete to r* = 17.6 over 140 deg2, we compute the luminosity function of galaxies in the r* band over a range -23 < M < -16 (for h = 1). The result is well-described by a Schechter function with parameters ϕ* = (1.46 ± 0.12) × 10-2 h3 Mpc-3, M* = -20.83 ± 0.03, and α = -1.20 ± 0.03. The implied luminosity density in r* is j ≈ (2.6 ± 0.3) × 108h L⊙ Mpc-3. We find that the surface brightness selection threshold has a negligible impact for M < -18. Using subsets of the data, we measure the luminosity function in the u*, g*, i*, and z* bands as well; the slope at low luminosities ranges from α = -1.35 to α = -1.2. We measure the bivariate distribution of r* luminosity with half-light surface brightness, intrinsic g*-r* color, and morphology. In agreement with previous studies, we find that high surface brightness, red, highly concentrated galaxies are on average more luminous than low surface brightness, blue, less concentrated galaxies. An important feature of the SDSS luminosity function is the use of Petrosian magnitudes, which measure a constant fraction of a galaxy's total light regardless of the amplitude of its surface brightness profile. If we synthesize results for RGKC band or bj band using these Petrosian magnitudes, we obtain luminosity densities 2 times that found by the Las Campanas Redshift Survey in RGKC and 1.4 times that found by the Two Degree Field Galaxy Redshift Survey in bj. However, we are able to reproduce the luminosity functions obtained by these surveys if we also mimic their isophotal limits for defining galaxy magnitudes, which are shallower and more redshift dependent than the Petrosian magnitudes used by the SDSS.
0

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Steven Majewski et al.Aug 14, 2017
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available.
0

Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies

Beth Reid et al.Mar 1, 2010
We present the power spectrum of the reconstructed halo density field derived from a sample of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k≤ 0.2 h Mpc−1, well into the quasi-linear regime. This enables us to use a factor of ∼8 more modes in the cosmological analysis than an analysis with kmax= 0.1 h Mpc−1, as was adopted in the SDSS team analysis of the DR4 LRG sample. The observed halo power spectrum for 0.02 < k < 0.2 h Mpc−1 is well fitted by our model: χ2= 39.6 for 40 degrees of freedom for the best-fitting Λ cold dark matter (ΛCDM) model. We find Ωmh2(ns/0.96)1.2= 0.141+0.010−0.012 for a power-law primordial power spectrum with spectral index ns and Ωbh2= 0.022 65 fixed, consistent with cosmic microwave background measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z= 0.35: rs/DV(0.35) = 0.1097+0.0039−0.0042. Combining the halo power spectrum measurement with the Wilkinson Microwave Anisotropy Probe (WMAP) 5 year results, for the flat ΛCDM model we find Ωm= 0.289 ± 0.019 and H0= 69.4 ± 1.6 km s−1 Mpc−1. Allowing for massive neutrinos in ΛCDM, we find eV at the 95 per cent confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff= 4.8+1.8−1.7. Combining also with the Kowalski et al. supernova sample, we find Ωtot= 1.011 ± 0.009 and w=−0.99 ± 0.11 for an open cosmology with constant dark energy equation of state w. The power spectrum and a module to calculate the likelihoods are publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/.
Load More