PurposeTo develop and evaluate deep learning models that screen multiple abnormal findings in retinal fundus images.DesignCross-sectional study.ParticipantsFor the development and testing of deep learning models, 309 786 readings from 103 262 images were used. Two additional external datasets (the Indian Diabetic Retinopathy Image Dataset and e-ophtha) were used for testing. A third external dataset (Messidor) was used for comparison of the models with human experts.MethodsMacula-centered retinal fundus images from the Seoul National University Bundang Hospital Retina Image Archive, obtained at the health screening center and ophthalmology outpatient clinic at Seoul National University Bundang Hospital, were assessed for 12 major findings (hemorrhage, hard exudate, cotton-wool patch, drusen, membrane, macular hole, myelinated nerve fiber, chorioretinal atrophy or scar, any vascular abnormality, retinal nerve fiber layer defect, glaucomatous disc change, and nonglaucomatous disc change) with their regional information using deep learning algorithms.Main Outcome MeasuresArea under the receiver operating characteristic curve and sensitivity and specificity of the deep learning algorithms at the highest harmonic mean were evaluated and compared with the performance of retina specialists, and visualization of the lesions was qualitatively analyzed.ResultsAreas under the receiver operating characteristic curves for all findings were high at 96.2% to 99.9% when tested in the in-house dataset. Lesion heatmaps highlight salient regions effectively in various findings. Areas under the receiver operating characteristic curves for diabetic retinopathy-related findings tested in the Indian Diabetic Retinopathy Image Dataset and e-ophtha dataset were 94.7% to 98.0%. The model demonstrated a performance that rivaled that of human experts, especially in the detection of hemorrhage, hard exudate, membrane, macular hole, myelinated nerve fiber, and glaucomatous disc change.ConclusionsOur deep learning algorithms with region guidance showed reliable performance for detection of multiple findings in macula-centered retinal fundus images. These interpretable, as well as reliable, classification outputs open the possibility for clinical use as an automated screening system for retinal fundus images. To develop and evaluate deep learning models that screen multiple abnormal findings in retinal fundus images. Cross-sectional study. For the development and testing of deep learning models, 309 786 readings from 103 262 images were used. Two additional external datasets (the Indian Diabetic Retinopathy Image Dataset and e-ophtha) were used for testing. A third external dataset (Messidor) was used for comparison of the models with human experts. Macula-centered retinal fundus images from the Seoul National University Bundang Hospital Retina Image Archive, obtained at the health screening center and ophthalmology outpatient clinic at Seoul National University Bundang Hospital, were assessed for 12 major findings (hemorrhage, hard exudate, cotton-wool patch, drusen, membrane, macular hole, myelinated nerve fiber, chorioretinal atrophy or scar, any vascular abnormality, retinal nerve fiber layer defect, glaucomatous disc change, and nonglaucomatous disc change) with their regional information using deep learning algorithms. Area under the receiver operating characteristic curve and sensitivity and specificity of the deep learning algorithms at the highest harmonic mean were evaluated and compared with the performance of retina specialists, and visualization of the lesions was qualitatively analyzed. Areas under the receiver operating characteristic curves for all findings were high at 96.2% to 99.9% when tested in the in-house dataset. Lesion heatmaps highlight salient regions effectively in various findings. Areas under the receiver operating characteristic curves for diabetic retinopathy-related findings tested in the Indian Diabetic Retinopathy Image Dataset and e-ophtha dataset were 94.7% to 98.0%. The model demonstrated a performance that rivaled that of human experts, especially in the detection of hemorrhage, hard exudate, membrane, macular hole, myelinated nerve fiber, and glaucomatous disc change. Our deep learning algorithms with region guidance showed reliable performance for detection of multiple findings in macula-centered retinal fundus images. These interpretable, as well as reliable, classification outputs open the possibility for clinical use as an automated screening system for retinal fundus images.