PM
Petro Maksymovych
Author with expertise in Lead-free Piezoelectric Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(57% Open Access)
Cited by:
6,269
h-index:
53
/
i10-index:
94
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CuInP2S6 Room Temperature Layered Ferroelectric

Alex Belianinov et al.May 1, 2015
We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.
0

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3

Nina Balke et al.Nov 6, 2011
Topological defects in ferroic materials are attracting much attention both as a playground of unique physical phenomena and for potential applications in reconfigurable electronic devices. Here, we explore electronic transport at artificially created ferroelectric vortices in BiFeO3 thin films. The creation of one-dimensional conductive channels activated at voltages as low as 1 V is demonstrated. We study the electronic as well as the static and dynamic polarization structure of several topological defects using a combination of first-principles and phase-field modelling. The modelling predicts that the core structure can undergo a reversible transformation into a metastable twist structure, extending charged domain walls segments through the film thickness. The vortex core is therefore a dynamic conductor controlled by the coupled response of polarization and electron–mobile-vacancy subsystems with external bias. This controlled creation of conductive one-dimensional channels suggests a pathway for the design and implementation of integrated oxide electronic devices based on domain patterning. The controlled creation of one-dimensional conductive channels at the cores of topological defects in the multiferroic material BiFeO3 demonstrates that such defects can drive metal–insulator phase transitions, and might provide a route towards high-density information storage.
0

Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale

Rama Vasudevan et al.May 1, 2017
Ferroelectric materials have remained one of the major focal points of condensed matter physics and materials science for over 50 years. In the last 20 years, the development of voltage-modulated scanning probe microscopy techniques, exemplified by Piezoresponse force microscopy (PFM) and associated time- and voltage spectroscopies, opened a pathway to explore these materials on a single-digit nanometer level. Consequently, domain structures and walls and polarization dynamics can now be imaged in real space. More generally, PFM has allowed studying electromechanical coupling in a broad variety of materials ranging from ionics to biological systems. It can also be anticipated that the recent Nobel prize [“The Nobel Prize in Chemistry 2016,” http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/ (Nobel Media, 2016)] in molecular electromechanical machines will result in rapid growth in interest in PFM as a method to probe their behavior on single device and device assembly levels. However, the broad introduction of PFM also resulted in a growing number of reports on the nearly ubiquitous presence of ferroelectric-like phenomena including remnant polar states and electromechanical hysteresis loops in materials which are non-ferroelectric in the bulk or in cases where size effects are expected to suppress ferroelectricity. While in certain cases plausible physical mechanisms can be suggested, there is remarkable similarity in observed behaviors, irrespective of the materials system. In this review, we summarize the basic principles of PFM, briefly discuss the features of ferroelectric surfaces salient to PFM imaging and spectroscopy, and summarize existing reports on ferroelectric-like responses in non-classical ferroelectric materials. We further discuss possible mechanisms behind observed behaviors and possible experimental strategies for their identification.
Load More