The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid β (Aβ) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Aβ-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Aβ generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Aβ generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Aβ levels in young mice, it nonetheless resulted in a dramatic reduction in Aβ plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Aβ levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Aβ levels lead to dramatic inhibition of Aβ-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD. The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid β (Aβ) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Aβ-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Aβ generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Aβ generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Aβ levels in young mice, it nonetheless resulted in a dramatic reduction in Aβ plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Aβ levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Aβ levels lead to dramatic inhibition of Aβ-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD. Alzheimer disease is the major cause of dementia in elderly people and is characterized by progressive cognitive decline. There is no cure, current treatments offer only temporary relief, and death invariably ensues. Substantial evidence suggests that the amyloid β peptide (Aβ) 6The abbreviations used are: Aβamyloid β peptideAPPamyloid precursor proteinBACE1β-site APP cleaving enzyme 1hAPPhuman APPADAlzheimer diseasePDAPPtransgenic mouse model of AD overexpressing human-mutated APPsAPPsecreted APPα-sAPPα-secretase site-cleaved sAPPβ-sAPPβ-secretase site-cleaved sAPPAβ1–xtotal Aβ from position 1–x;Aβ-42; Aβ peptide from position 1–42APP-SweSwedish variant of APP with KM mutated to NL at positions 595 and 596OMLhippocampal outer molecular layerSYNsynaptophysinELISAenzyme-linked immunosorbent assayWTwild type.6The abbreviations used are: Aβamyloid β peptideAPPamyloid precursor proteinBACE1β-site APP cleaving enzyme 1hAPPhuman APPADAlzheimer diseasePDAPPtransgenic mouse model of AD overexpressing human-mutated APPsAPPsecreted APPα-sAPPα-secretase site-cleaved sAPPβ-sAPPβ-secretase site-cleaved sAPPAβ1–xtotal Aβ from position 1–x;Aβ-42; Aβ peptide from position 1–42APP-SweSwedish variant of APP with KM mutated to NL at positions 595 and 596OMLhippocampal outer molecular layerSYNsynaptophysinELISAenzyme-linked immunosorbent assayWTwild type. is the cause of Alzheimer disease (AD)-associated neuropathology (1Hardy J. Selkoe D.J. Science. 2002; 297: 353-356Crossref PubMed Scopus (10863) Google Scholar). Aβ is derived by sequential proteolysis of the amyloid precursor protein (APP) through β- and γ-secretase activities and is widely deposited in amyloid plaques in the brains of individuals with AD (2Selkoe D.J. Physiol. Rev. 2001; 81: 741-766Crossref PubMed Scopus (5135) Google Scholar, 3Selkoe D.J. Schenk D. Annu. Rev. Pharmacol. Toxicol. 2003; 43: 545-584Crossref PubMed Scopus (739) Google Scholar). Therefore, inhibiting the action of one or both of these enzymatic activities may provide inaugural disease-modifying therapies for AD. amyloid β peptide amyloid precursor protein β-site APP cleaving enzyme 1 human APP Alzheimer disease transgenic mouse model of AD overexpressing human-mutated APP secreted APP α-secretase site-cleaved sAPP β-secretase site-cleaved sAPP total Aβ from position 1–x;Aβ-42; Aβ peptide from position 1–42 Swedish variant of APP with KM mutated to NL at positions 595 and 596 hippocampal outer molecular layer synaptophysin enzyme-linked immunosorbent assay wild type. amyloid β peptide amyloid precursor protein β-site APP cleaving enzyme 1 human APP Alzheimer disease transgenic mouse model of AD overexpressing human-mutated APP secreted APP α-secretase site-cleaved sAPP β-secretase site-cleaved sAPP total Aβ from position 1–x;Aβ-42; Aβ peptide from position 1–42 Swedish variant of APP with KM mutated to NL at positions 595 and 596 hippocampal outer molecular layer synaptophysin enzyme-linked immunosorbent assay wild type. The aspartyl protease BACE1 is the primary β-secretase (4Vassar R. Bennett B.D. Babu-Khan S. Kahn S. Mendiaz E.A. Denis P. Teplow D.B. Ross S. Amarante P. Loeloff R. Luo Y. Fisher S. Fuller J. Edenson S. Lile J. Jarosinski M.A. Biere A.L. Curran E. Burgess T. Louis J.C. Collins F. Treanor J. Rogers G. Citron M. Science. 1999; 286: 735-741Crossref PubMed Scopus (3271) Google Scholar, 5Sinha S. Anderson J.P. Barbour R. Basi G.S. Caccavello R. Davis D. Doan M. Dovey H.F. Frigon N. Hong J. Jacobson-Croak K. Jewett N. Keim P. Knops J. Lieberburg I. Power M. Tan H. Tatsuno G. Tung J. Schenk D. Seubert P. Suomensaari S.M. Wang S. Walker D. Zhao J. McConlogue L. John V. Nature. 1999; 402: 537-540Crossref PubMed Scopus (1474) Google Scholar, 6Yan R. Bienkowski M.J. Shuck M.E. Miao H. Tory M.C. Pauley A.M. Brashier J.R. Stratman N.C. Mathews W.R. Buhl A.E. Carter D.B. Tomasselli A.G. Parodi L.A. Heinrikson R.L. Gurney M.E. Nature. 1999; 402: 533-537Crossref PubMed Scopus (1329) Google Scholar) and is the sole β-secretase in mice, since its genetic ablation fully abolishes Aβ generation (7Roberds S.L. Anderson J. Basi G. Bienkowski M.J. Branstetter D.G. Chen K.S. Freedman S.B. Frigon N.L. Games D. Hu K. Johnson-Wood K. Kappenman K.E. Kawabe T.T. Kola I. Kuehn R. Lee M. Liu W. Motter R. Nichols N.F. Power M. Robertson D.W. Schenk D. Schoor M. Shopp G.M. Shuck M.E. Sinha S. Svensson K.A. Tatsuno G. Tintrup H. Wijsman J. Wright S. McConlogue L. Hum. Mol. Genet. 2001; 10: 1317-1324Crossref PubMed Google Scholar, 8Cai H. Wang Y. McCarthy D. Wen H. Borchelt D.R. Price D.L. Wong P.C. Nat. Neurosci. 2001; 4: 233-234Crossref PubMed Scopus (946) Google Scholar, 9Luo Y. Bolon B. Kahn S. Bennett B.D. Babu-Khan S. Denis P. Fan W. Kha H. Zhang J. Gong Y. Martin L. Louis J.C. Yan Q. Richards W.G. Citron M. Vassar R. Nat. Neurosci. 2001; 4: 231-232Crossref PubMed Scopus (944) Google Scholar). Early reports indicated that BACE1 knock-out animals are healthy and fertile, with no histological pathologies, suggesting that inhibition of BACE1 for therapeutic intervention in AD would have no mechanism related toxicities (7Roberds S.L. Anderson J. Basi G. Bienkowski M.J. Branstetter D.G. Chen K.S. Freedman S.B. Frigon N.L. Games D. Hu K. Johnson-Wood K. Kappenman K.E. Kawabe T.T. Kola I. Kuehn R. Lee M. Liu W. Motter R. Nichols N.F. Power M. Robertson D.W. Schenk D. Schoor M. Shopp G.M. Shuck M.E. Sinha S. Svensson K.A. Tatsuno G. Tintrup H. Wijsman J. Wright S. McConlogue L. Hum. Mol. Genet. 2001; 10: 1317-1324Crossref PubMed Google Scholar, 9Luo Y. Bolon B. Kahn S. Bennett B.D. Babu-Khan S. Denis P. Fan W. Kha H. Zhang J. Gong Y. Martin L. Louis J.C. Yan Q. Richards W.G. Citron M. Vassar R. Nat. Neurosci. 2001; 4: 231-232Crossref PubMed Scopus (944) Google Scholar, 10Luo Y. Bolon B. Damore M.A. Fitzpatrick D. Liu H. Zhang J. Yan Q. Vassar R. Citron M. Neurobiol. Dis. 2003; 14: 81-88Crossref PubMed Scopus (152) Google Scholar). In contrast, recent reports of partially penetrant lethality and cognitive deficits in BACE1 knock-out animals do suggest potential liabilities of complete BACE1 inhibition (11Laird F.M. Cai H. Savonenko A.V. Farah M.H. He K. Melnikova T. Wen H. Chiang H.C. Xu G. Koliatsos V.E. Borchelt D.R. Price D.L. Lee H.K. Wong P.C. J. Neurosci. 2005; 25: 11693-11709Crossref PubMed Scopus (450) Google Scholar, 12Dominguez D. Tournoy J. Hartmann D. Huth T. Cryns K. Deforce S. Serneels L. Camacho I.E. Marjaux E. Craessaerts K. Roebroek A.J. Schwake M. D'Hooge R. Bach P. Kalinke U. Moechars D. Alzheimer C. Reiss K. Saftig P. De Strooper B. J. Biol. Chem. 2005; 280: 30797-30806Abstract Full Text Full Text PDF PubMed Scopus (293) Google Scholar). As the initiating enzyme in the generation of Aβ, BACE1 is a key drug target and would be predicted to abrogate pathologies associated with any form of Aβ. To avoid potential side effects resulting from complete loss of BACE1 activity, it is critical to determine the required degree of inhibition necessary for potential therapeutic benefit. Cognitive decline in AD is believed to be due to the progressive degeneration of synapses and neurons (13DeKosky S.T. Scheff S.W. Ann. Neurol. 1990; 27: 457-464Crossref PubMed Scopus (1656) Google Scholar, 14Terry R. Masliah E. Hansen L.A. Terry R. Katzman R. Bick K.L. Sisodia S.S. Alzheimer Disease Lippincott Williams & Wilkins, Philadelphia. 1999: 187-206Google Scholar), yet the precise relationship between Aβ, plaques, and neurodegeneration is still unclear. Transgenic mice that neuronally overexpress human APP (hAPP) carrying mutations associated with familial-inherited forms of AD, such as the PDAPP mouse, develop several AD-like neuropathologies including amyloid plaques and synaptic deficits (15Masliah E. Sisk A. Mallory M. Mucke L. Schenk D. Games D. J. Neurosci. 1996; 16: 5795-5811Crossref PubMed Google Scholar, 16Games D. Adams D. Alessandrini R. Barbour R. Berthelette P. Blackwell C. Carr T. Clemens J. Donaldson T. Gillespie F. Guido T. Hagopian S. Johnson-Wood K. Khan K. Lee M. Leibowitz P. Lieberburg I. Little S. Masliah E. McConlogue L. Montoya-Zavala M. Mucke L. Paganini L. Penniman E. Power M. Schenk D. Seubert P. Snyder B. Soriano F. Tan H. Vitale J. Wadsworth S. Wolozin B. Zhao J. Nature. 1995; 373: 523-527Crossref PubMed Scopus (2227) Google Scholar, 17Chen K.S. Masliah E. Grajeda H. Guido T. Huang J. Khan K. Motter R. Soriano F. Games D. Prog. Brain Res. 1998; 117: 327-334Crossref PubMed Google Scholar, 18Bornemann K.D. Staufenbiel M. Ann. N. Y. Acad. Sci. 2000; 908: 260-266Crossref PubMed Scopus (74) Google Scholar, 19Hsiao K. Chapman P. Nilsen S. Eckman C. Harigaya Y. Younkin S. Yang F. Cole G. Science. 1996; 274: 99-102Crossref PubMed Scopus (3671) Google Scholar, 20Holcomb L. Gordon M.N. McGowan E. Yu X. Benkovic S. Jantzen P. Wright K. Saad I. Mueller R. Morgan D. Sanders S. Zehr C. O'Campo K. Hardy J. Prada C.M. Eckman C. Younkin S. Hsiao K. Duff K. Nat. Med. 1998; 4: 97-100Crossref PubMed Scopus (1154) Google Scholar). BACE1 gene ablation led to reduced plaque pathology and behavioral deficits in hAPP transgenic mice (10Luo Y. Bolon B. Damore M.A. Fitzpatrick D. Liu H. Zhang J. Yan Q. Vassar R. Citron M. Neurobiol. Dis. 2003; 14: 81-88Crossref PubMed Scopus (152) Google Scholar, 11Laird F.M. Cai H. Savonenko A.V. Farah M.H. He K. Melnikova T. Wen H. Chiang H.C. Xu G. Koliatsos V.E. Borchelt D.R. Price D.L. Lee H.K. Wong P.C. J. Neurosci. 2005; 25: 11693-11709Crossref PubMed Scopus (450) Google Scholar, 21Ohno M. Sametsky E.A. Younkin L.H. Oakley H. Younkin S.G. Citron M. Vassar R. Disterhoft J.F. Neuron. 2004; 41: 27-33Abstract Full Text Full Text PDF PubMed Scopus (457) Google Scholar, 22Ohno M. Chang L. Tseng W. Oakley H. Citron M. Klein W.L. Vassar R. Disterhoft J.F. Eur. J. Neurosci. 2006; 23: 251-260Crossref PubMed Scopus (224) Google Scholar). However, the complete characterization of age-dependent, AD-related neuropathology and neurodegeneration in human APP transgenic mice affected by BACE1-knock-out is still lacking. In particular, the role of Aβ in synaptic pathology, a plaque-independent pathology (14Terry R. Masliah E. Hansen L.A. Terry R. Katzman R. Bick K.L. Sisodia S.S. Alzheimer Disease Lippincott Williams & Wilkins, Philadelphia. 1999: 187-206Google Scholar, 23Mucke L. Masliah E. Yu G.Q. Mallory M. Rockenstein E.M. Tatsuno G. Hu K. Kholodenko D. Johnson-Wood K. McConlogue L. J. Neurosci. 2000; 20: 4050-4058Crossref PubMed Google Scholar), and a robust correlate of cognitive decline in AD awaits further confirmation. We have used BACE1 knock-out animals crossed with PDAPP mice to define the role of Aβ in plaque, neuritic, and synaptic pathology and, thus, evaluate BACE1 inhibition as a therapeutic approach for AD. To determine the degree of BACE1 inhibition required to impact pathology, we crossed PDAPP mice onto the heterozygous BACE1 knock-out background and examined the effects of partially reduced BACE1 on Aβ levels and on AD-like pathologies. We find that homozygous ablation of BACE1 reduces plaque and synaptic pathologies in the PDAPP mouse model. Ablation of a single BACE1 allele has only a modest effect on Aβ levels yet significantly reduces plaque and synaptic pathologies in these mice. These observations suggest that only modest inhibition of Aβ in AD patients could lead to a significant reduction of pathology. Animals—Table 1 shows all the genotypes and their abbreviations for the mice analyzed in this study. Mouse experiments were performed in accordance with Institutional Animal Care and Use Committee policies and procedures. WT/BACE(+/-) mice, with exon 1 (exon containing the initiating ATG) deleted as described previously (7Roberds S.L. Anderson J. Basi G. Bienkowski M.J. Branstetter D.G. Chen K.S. Freedman S.B. Frigon N.L. Games D. Hu K. Johnson-Wood K. Kappenman K.E. Kawabe T.T. Kola I. Kuehn R. Lee M. Liu W. Motter R. Nichols N.F. Power M. Robertson D.W. Schenk D. Schoor M. Shopp G.M. Shuck M.E. Sinha S. Svensson K.A. Tatsuno G. Tintrup H. Wijsman J. Wright S. McConlogue L. Hum. Mol. Genet. 2001; 10: 1317-1324Crossref PubMed Google Scholar), were crossed onto PDAPPhom/BACE(+/+) mice from line 109 (16Games D. Adams D. Alessandrini R. Barbour R. Berthelette P. Blackwell C. Carr T. Clemens J. Donaldson T. Gillespie F. Guido T. Hagopian S. Johnson-Wood K. Khan K. Lee M. Leibowitz P. Lieberburg I. Little S. Masliah E. McConlogue L. Montoya-Zavala M. Mucke L. Paganini L. Penniman E. Power M. Schenk D. Seubert P. Snyder B. Soriano F. Tan H. Vitale J. Wadsworth S. Wolozin B. Zhao J. Nature. 1995; 373: 523-527Crossref PubMed Scopus (2227) Google Scholar, 24Rockenstein E.M. McConlogue L. Tan H. Power M. Masliah E. Mucke L. J. Biol. Chem. 1995; 270: 28257-28267Abstract Full Text Full Text PDF PubMed Scopus (219) Google Scholar) to generate PDAPP/BACE(+/-) and PDAPP/BACE(+/+) animals. WT/BACE(+/-) animals were generated on a 129/Ola strain ES cell and bred for three subsequent generations onto C57Bl/6. PDAPPhom/BACE(+/+) mice were maintained on a background of C57Bl/6J, DBA2 and Swiss Webster (24Rockenstein E.M. McConlogue L. Tan H. Power M. Masliah E. Mucke L. J. Biol. Chem. 1995; 270: 28257-28267Abstract Full Text Full Text PDF PubMed Scopus (219) Google Scholar). Experiments comparing PDAPP/BACE(+/-) and PDAPP/BACE(+/+) animals were obtained from this colony. The PDAPP/BACE(+/-) progeny were subsequently intercrossed to produce all possible genotype combinations for experiments including BACE(-/-) genotypes. Standard PCR techniques were used to type the BACE genotype, and quantitative PCR was used to distinguish homozygous PDAPP from heterozygous PDAPP genotypes. Mice were anesthetized, and their brains were quickly removed and fixed for 48 h in phosphate-buffered 4% paraformaldehyde before being processed for immunohistochemistry or dissected into sub-brain regions and snap-frozen for biochemical analyses.TABLE 1List of abbreviations for transgene genotypes Table 1 shows all the genotypes and their abbreviations for the mice analyzed in this studyPDAPP transgeneBACE1 geneAbbreviationWild typeWild typeWT/BACE(+/+)HeterozygousWild typePDAPP/BACE(+/+)Wild typeComplete knockout (2 alleles deleted)WT/BACE(–/–)HeterozygousComplete knockoutPDAPP/BACE(–/–)Wild typePartial knockout (1 allele deleted)WT/BACE(+/–)HeterozygousPartial knockoutPDAPP/BACE(+/–)HomozygousWild typePDAPPhom/BACE(+/+)HomozygousComplete knockoutPDAPPhom/BACE(–/–) Open table in a new tab Quantitation of Aβ, β-sAPP, β-Secretase Activity, and Plaque Burden—Snap-frozen cortices and hippocampi were homogenized in 5 m guanidine buffer, and levels of β-sAPP, total Aβ (Aβ1–x), and of Aβ-42 were quantitated by ELISA as described (25Johnson-Wood K. Lee M. Motter R. Hu K. Gordon G. Barbour R. Khan K. Gordon M. Tan H. Games D. Lieberburg I. Schenk D. Seubert P. McConlogue L. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 1550-1555Crossref PubMed Scopus (582) Google Scholar). The total Aβ (Aβ1–x) sandwich ELISA consists of the capture antibody 266, which is specific to amino acids 13–28 of Aβ, and the biotinylated reporter antibody 3D6, which is specific to amino acids 1–5 of Aβ. The plasma Aβ ELISA assay was performed as described (25Johnson-Wood K. Lee M. Motter R. Hu K. Gordon G. Barbour R. Khan K. Gordon M. Tan H. Games D. Lieberburg I. Schenk D. Seubert P. McConlogue L. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 1550-1555Crossref PubMed Scopus (582) Google Scholar) except Aβ standards, samples, and biotinylated antibody are diluted in specimen diluent with proteinase inhibitors for the assay. β-Secretase activity was measured from crude membrane homogenates of hemibrains as described (7Roberds S.L. Anderson J. Basi G. Bienkowski M.J. Branstetter D.G. Chen K.S. Freedman S.B. Frigon N.L. Games D. Hu K. Johnson-Wood K. Kappenman K.E. Kawabe T.T. Kola I. Kuehn R. Lee M. Liu W. Motter R. Nichols N.F. Power M. Robertson D.W. Schenk D. Schoor M. Shopp G.M. Shuck M.E. Sinha S. Svensson K.A. Tatsuno G. Tintrup H. Wijsman J. Wright S. McConlogue L. Hum. Mol. Genet. 2001; 10: 1317-1324Crossref PubMed Google Scholar). P2 membranes were prepared from brain hemisections and extracted with buffer containing 0.2% Triton X-100. All assays contained 10 μg of membrane protein per ml. The substrate used was recombinant bacterial maltose-binding protein fused to the C-terminal 125-amino acid sequence of the Swedish variant of APP (APP-Swe). The cleaved product was measure by ELISA using anti-bacterial maltose-binding protein capture and detected with 129sw antibody, specific for cleaved neo-epitope of β-secreted APP-Swe. Plaque burden and neuritic dystrophy were assessed by quantitative immuno-peroxidase histochemistry on free-floating, 40-μm-thick vibratome sections using the monoclonal anti-Aβ antibody 3D6 for the detection of plaques or the human specific APP antibody 8E5 for the detection of neuritic dystrophy as described (26Schenk D. Barbour R. Dunn W. Gordon G. Grajeda H. Guido T. Hu K. Huang J. Johnson-Wood K. Khan K. Kholodenko D. Lee M. Liao Z. Lieberburg I. Motter R. Mutter L. Soriano F. Shopp G. Vasquez N. Vandevert C. Walker S. Wogulis M. Yednock T. Games D. Seubert P. Nature. 1999; 400: 173-177Crossref PubMed Scopus (2931) Google Scholar, 27Bard F. Cannon C. Barbour R. Burke R.L. Games D. Grajeda H. Guido T. Hu K. Huang J. Johnson-Wood K. Khan K. Kholodenko D. Lee M. Lieberburg I. Motter R. Nguyen M. Soriano F. Vasquez N. Weiss K. Welch B. Seubert P. Schenk D. Yednock T. Nat. Med. 2000; 6: 916-919Crossref PubMed Scopus (1796) Google Scholar). For each of these markers, six immunolabeled sections were analyzed per mouse, and the average of the individual measurements was used to calculate group medians. Quantitative Synaptophysin Immunohistochemistry—Forty-μm-thick free-floating sections were immunostained with 1:850-diluted anti-SYN antibody (Clone SY38, Dako, Carpenteria, CA) and fluorescein isothiocyanate-labeled secondary antibody following a standard protocol. Immunolabeled brain sections were assigned code numbers to ensure objective assessment and imaged with a Bio-Rad MRC-1024 laser-scanning confocal microscope mounted on a Nikon Optiphot-2 microscope with Lasersharp software as described (28Masliah E. Achim C.L. Ge N. DeTeresa R. Terry R.D. Wiley C.A. Ann. Neurol. 1992; 32: 321-329Crossref PubMed Scopus (326) Google Scholar, 29Buttini M. Orth M. Bellosta S. Akeefe H. Pitas R.E. Wyss-Coray T. Mucke L. Mahley R.W. J. Neurosci. 1999; 19: 4867-4880Crossref PubMed Google Scholar). Synaptophysin levels were assessed in the frontal neocortex and the hippocampal outer molecular layer (OML) in two sections/animal (29Buttini M. Orth M. Bellosta S. Akeefe H. Pitas R.E. Wyss-Coray T. Mucke L. Mahley R.W. J. Neurosci. 1999; 19: 4867-4880Crossref PubMed Google Scholar). For each mouse we obtained four confocal images (two per section) of the neocortex and two confocal images (one per section) of the hippocampal OML, each covering an area of 240 μm × 180 μm. The iris and gain levels were adjusted to obtain images with a pixel intensity within a linear range. Digitized, 8-bit images were transferred to a Macintosh computer, and the average pixel intensity of synaptophysin staining was calculated for each image with NIH Image. This approach for the assessment of synaptic degeneration has been validated in various experimental models of neurodegeneration (23Mucke L. Masliah E. Yu G.Q. Mallory M. Rockenstein E.M. Tatsuno G. Hu K. Kholodenko D. Johnson-Wood K. McConlogue L. J. Neurosci. 2000; 20: 4050-4058Crossref PubMed Google Scholar, 29Buttini M. Orth M. Bellosta S. Akeefe H. Pitas R.E. Wyss-Coray T. Mucke L. Mahley R.W. J. Neurosci. 1999; 19: 4867-4880Crossref PubMed Google Scholar) and in diseased human brains (28Masliah E. Achim C.L. Ge N. DeTeresa R. Terry R.D. Wiley C.A. Ann. Neurol. 1992; 32: 321-329Crossref PubMed Scopus (326) Google Scholar). Statistical Analyses—Parametric data were analyzed by one-way analysis of variance followed by Dunnett's test, or Tukey multiple comparison tests where appropriate. Non-parametric data were analyzed by Mann-Whitney or Kruskall-Wallis' test followed by Dunn's test for comparison of multiple data sets. A p < 0.05 was considered significant. All analyses were done with the Prism software (GraphPad, San Diego, CA). Elimination of Cerebral Aβ Blocks the Development of Plaque Pathology in PDAPP Mice—We and others (7Roberds S.L. Anderson J. Basi G. Bienkowski M.J. Branstetter D.G. Chen K.S. Freedman S.B. Frigon N.L. Games D. Hu K. Johnson-Wood K. Kappenman K.E. Kawabe T.T. Kola I. Kuehn R. Lee M. Liu W. Motter R. Nichols N.F. Power M. Robertson D.W. Schenk D. Schoor M. Shopp G.M. Shuck M.E. Sinha S. Svensson K.A. Tatsuno G. Tintrup H. Wijsman J. Wright S. McConlogue L. Hum. Mol. Genet. 2001; 10: 1317-1324Crossref PubMed Google Scholar, 8Cai H. Wang Y. McCarthy D. Wen H. Borchelt D.R. Price D.L. Wong P.C. Nat. Neurosci. 2001; 4: 233-234Crossref PubMed Scopus (946) Google Scholar, 9Luo Y. Bolon B. Kahn S. Bennett B.D. Babu-Khan S. Denis P. Fan W. Kha H. Zhang J. Gong Y. Martin L. Louis J.C. Yan Q. Richards W.G. Citron M. Vassar R. Nat. Neurosci. 2001; 4: 231-232Crossref PubMed Scopus (944) Google Scholar) have shown that complete BACE1 gene knock-out mice do not produce Aβ. Fig. 1A shows that this is also true for Aβ produced from the human APP transgene in the cortex of young PDAPP mice. Although robust levels of Aβ were detected by ELISA in the cortex of PDAPP/BACE(+/+) animals, none was detectable in cortex of PDAPP/BACE(-/-) mice. This allowed us to dissect which pathological features of the PDAPP animals are due to Aβ and which are due to potential other effects of the APP transgene. Luo et al. (10Luo Y. Bolon B. Damore M.A. Fitzpatrick D. Liu H. Zhang J. Yan Q. Vassar R. Citron M. Neurobiol. Dis. 2003; 14: 81-88Crossref PubMed Scopus (152) Google Scholar) have reported that BACE1 knock-out prevented the development of amyloid plaque in Tg2576 APP transgenic mice. Because PDAPP (line 109) mice develop more aggressive plaque pathology, we wanted to determine whether BACE1 gene deletion likewise would prevent plaque formation in these animals. A qualitative assessment of the presence or absence of plaques in 13-month-old PDAPP/BACE(+/+) and PDAPP/BACE(-/-) mice showed a complete absence of amyloid plaques in the mice with the latter genotype (Fig. 2, A1 and A2). The plaque burden observed in the PDAPP/BACE(+/+) mice was typical for PDAPP (109) animals at 13 months of age. At 13 months, the vast majority of Aβ in brains of PDAPP mice is deposited in amyloid plaques, and therefore, ELISA measurements of Aβ in guanidine-solubilized cortex provides another measurement of amyloid deposition (25Johnson-Wood K. Lee M. Motter R. Hu K. Gordon G. Barbour R. Khan K. Gordon M. Tan H. Games D. Lieberburg I. Schenk D. Seubert P. McConlogue L. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 1550-1555Crossref PubMed Scopus (582) Google Scholar). To verify that immunohistochemical analysis did not miss some forms of amyloid deposits, total Aβ load was quantitated by ELISA in solubilized cortex, which also showed a complete lack of Aβ in PDAPP/BACE(-/-) mice (Fig. 1B). Thus, the production of Aβ and its deposition into plaques can be completely ablated by BACE1 gene knock-out in PDAPP mice. Dystrophic neurites co-localize with senile plaques in transgenic hAPP mice mouse models (15Masliah E. Sisk A. Mallory M. Mucke L. Schenk D. Games D. J. Neurosci. 1996; 16: 5795-5811Crossref PubMed Google Scholar, 31Danner S. Herzig M. Staufenbiel M. Wiederhold K. Neurobiol. Aging (Abstr. 905). 2002; 23: S241Google Scholar) and in humans (32McKee A.C. Kosik K.S. Kowall N.W. Ann. Neurol. 1991; 30: 156-165Crossref PubMed Scopus (332) Google Scholar, 33Dickson D.W. Farlo J. Davies P. Crystal H. Fuld P. Yen S.H. Am J. Pathol. 1988; 132: 86-101PubMed Google Scholar, 34Dickson T.C. Vickers J.C. Neuroscience. 2001; 105: 99-107Crossref PubMed Scopus (202) Google Scholar), and several lines of evidence in vitro (35Grace E.A. Rabiner C.A. Busciglio J. Neuroscience. 2002; 114: 265-273Crossref PubMed Scopus (147) Google Scholar) and in vivo (36Spires T.L. Hyman B.T. Rev. Neurosci. 2004; 15: 267-278Crossref PubMed Scopus (93) Google Scholar) indicate that they form in response to the appearance of plaques. These pathologic features consist of swollen and distorted neurites, which can be visualized with APP-specific antibodies because they accumulate a variety of proteins including APP. The same animals investigated for amyloid plaques were also assessed for neuritic dystrophy (Figs. 2, B1 and B2). All of the PDAPP/BACE(-/-) mice were devoid of dystrophic neurites, thus showing that BACE1 gene knock-out can also prevent plaque-dependent AD-like pathology in PDAPP mice. Heterozygous BACE1 Gene Knock-out Has a Modest Effect on Soluble Brain Aβ Levels in Young Mice Yet Dramatic Effects on the Development of Plaques with Age—Complete deletion of the BACE1 gene leads to subtle behavioral and electrophysiological alterations in normal and in APP transgenic mice (11Laird F.M. Cai H. Savonenko A.V. Farah M.H. He K. Melnikova T. Wen H. Chiang H.C. Xu G. Koliatsos V.E. Borchelt D.R. Price D.L. Lee H.K. Wong P.C. J. Neurosci. 2005; 25: 11693-11709Crossref PubMed Scopus (450) Google Scholar, 37Kobayashi D. Zeller M. Cole T. Buttini M. McConlogue L. Sinha S. Freedman S. Morris R.G. Chen K.S. Neurobiol. Aging, in press. 2007; Google Scholar). In aged mice lacking BACE1, we observed abnormally elevated synaptophysin levels in the frontal cortex and hippocampal molecular layer (see below). These observations support the notions that BACE1 may have physiological targets other than APP (38Kitazume S. Tachida Y. Oka R. Shirotani K. Saido T.C. Hashimoto Y. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 13554-13559Crossref PubMed Scopus (231) Google Scholar, 39von Arnim C.A. Kinoshita A. Peltan I.D. Tangredi M.M. Herl L. Lee B.M. Spoelgen R. Hshieh T.T. Ranganathan S. Battey F.D. Liu C.X. Bacskai B.J. Sever S. Irizarry M.C. Strickland D.K. Hyman B.T. J. Biol. Chem. 2005; 280: 17777-17785Abstract Full Text Full Text PDF PubMed Scopus (224) Google Scholar, 40Li Q. Sudhof T.C. J. Biol. Chem. 2004; 279: 10542-10550Abstract Full Text Full Text PDF PubMed Scopus (201) Google Scholar, 41Kitazume S. Nakagawa K. Oka R. Tachida Y. Ogawa K. Luo Y. Citron M. Shitara H. Taya C. Yonekawa H. Paulson J.C. Miyoshi E. Taniguchi N. Hashimoto Y. J. Biol. Chem. 2005; 280: 8589-8595Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar, 42Kitazume S. Tachida Y. Oka R. Kotani N. Ogawa K. Suzuki M. Dohmae N. Takio K. Saido T.C. Hashimoto Y. J. Biol. Chem. 2003; 278: 14865-14871Abstract Full Text Full T