VS
Vijay Singh
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(28% Open Access)
Cited by:
2,922
h-index:
58
/
i10-index:
194
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

Durgesh Tripathi et al.Feb 6, 2017
The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate-glutatione cycle (AsA-GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA-GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA-GSH cycle.
0

Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings

Durgesh Tripathi et al.Jun 27, 2016
The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H2O2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings.
0

Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings

Durgesh Tripathi et al.Jul 26, 2015
The present study was aimed to investigate the effect of silicon nanoparticles (SiNp) against Cr (VI) phytotoxicity in pea seedlings. Results show that Cr(VI, 100 μM) significantly (P < 0.05) declined growth of pea which was accompanied by the enhanced level of Cr. Additionally, photosynthetic pigments and chlorophyll fluorescence parameters like Fv/Fm, Fv/F0 and qP were decreased while NPQ significantly (P < 0.05) increased under Cr(VI) treatment. Superoxide radical, hydrogen peroxide and malondialdehyde (MDA-lipid peroxidation) contents were enhanced by Cr(VI). Activities of antioxidant enzymes like superoxide dismutase and ascorbate peroxidase were increased by Cr (VI) while activities of catalase, glutathione reductase and dehydroascorbate reductase were inhibited significantly (P < 0.05). Micro and macronutrients also show decreasing trends (except S) under Cr(VI) treatment. However, addition of SiNp together with Cr(VI) protects pea seedlings against Cr(VI) phytotoxicity hence improved growth was noticed. In conclusion, the results of this study show that Cr(VI) causes negative impact on pea seedlings, however; SiNp protects pea seedlings against Cr(VI) phytotoxicity by reducing Cr accumulation and oxidative stress, and up-regulating antioxidant defense system and nutrient elements.
0

Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings

Durgesh Tripathi et al.Jun 19, 2016
Understanding the adverse impact of nanoparticles in crop plants has emerged as one of the most interesting fields of plant research. Therefore, this study has been conducted to investigate the impact of silver nanoparticles (AgNps) on Pisium sativum seedlings. Besides this, we have also tested whether nitric oxide (NO) is capable of reducing toxicity of AgNps or not. NO has been found as one of the most fascinating molecules, capable of enhancing plant tolerance to different environmental stresses. The results of the present study showed that AgNps treatments (1000 μM and 3000 μM) significantly declined growth parameters, photosynthetic pigments and chlorophyll fluorescence of pea seedlings, which could be correlated with increased accumulation of Ag in root and shoot of pea seedlings. In contrast, addition of SNP (100 μM; a donor of NO) successfully ameliorated AgNp-induced adverse effects on these parameters as it reduced accumulation of Ag and repaired damaged tissues. Levels of oxidative stress markers (SOR, H2O2 and MDA) were enhanced while their levels significantly reduced under SNP addition. AgNps (1000 μM and 3000 μM) significantly stimulated the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) while inhibited activities of glutathione reductase (GR) and dehydroascorbate reductase (DHAR). AgNps also considerably declined the total ascorbate and glutathione contents and severely damaged leaf and root anatomical structures. On the other hand, addition of SNP further increased the level of SOD, APX, GR and DHAR and significantly increased the decreased levels of total ascorbate and glutathione contents, and repaired anatomical structures. In conclusion, this study suggests that AgNps treatments adversely decreased growth, pigments and photosynthesis due to enhanced level of Ag and oxidative stress. However, SNP addition successfully ameliorates adverse impact of AgNps on pea seedlings by regulating the Ag uptake, antioxidant system, oxidative stress and anatomical structures of root and shoot.
0

Silicon Nanoparticles More Efficiently Alleviate Arsenate Toxicity than Silicon in Maize Cultiver and Hybrid Differing in Arsenate Tolerance

Durgesh Tripathi et al.Jul 6, 2016
Though role of silicon (Si) in alleviation of various abiotic stresses is well known; however, role of silicon nanoparticles (SiNp) in mitigation of abiotic stresses is still not known. Therefore, hydroponic experiments were conducted to investigate if SiNPs are more effective than Si in mitigation of arsenate (AsV; 25 and 50 µM) toxicity in maize cultivar and hybrid differing in AsV tolerance. Under AsV stress, reduction in growth was accompanied by enhanced level of As and oxidative stress. AsV inhibited activities of antioxidant enzymes like ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase (except superoxide dismutase). The redox status of ascorbate and glutathione was disturbed by AsV as indicated by a steep decline in their reduced/oxidized ratios. However, addition of Si and SiNp ameliorates AsV toxicity in maize. Si and SiNp both could reduce AsV toxicity in maize cultivar and hybrid, which could be related with decreased accumulation of As and oxidative stress, and enhanced components of the ascorbate-glutathione cycle (AsA-GSH cycle). But lowering in the accumulation of As and oxidative stress markers, and enhancement in components of the AsA-GSH cycle was prominent in SiNp fed seedlings under AsV stress. The results also showed that SiNp are more effective in reducing AsV toxicity than Si, which is due to their greater availability to seedlings. Comparing responses of cultivar and hybrid, maize cultivar shows more resistance against AsV than hybrid.
0

Tracking and managing the water-food-environment-ecosystem (WFEE) nexus in groundwater irrigation districts using system dynamics modelling

Chiheng Dang et al.Jul 14, 2024
Groundwater irrigation districts, which play a crucial role in the Earth's critical zone, are confronted with numerous challenges, including water scarcity, pollution, and ecological degradation. These issues come from multiple systems and are linked to a groundwater-dominated water-food-environment-ecosystem nexus problem related to agricultural activities (WFEE). There is a pressing need for the scientific characterization and evaluation of the WFEE nexus in groundwater irrigation districts to assure high-quality, sustainable development. Furthermore, it is critical to provide practical and efficient regulations at the farmer level to uphold the health of this nexus. This paper presents a mapping network that focuses on groundwater irrigation districts. The network aims to convert the restriction indicators utilized to maintain the health of the WFEE nexus (at the irrigation district scale) into the targets employed to manage farmers' living and agricultural activities (at the farmer scale). Additionally, a system dynamics model is created to track and manage the interacting relationships between the WFEE nexus and farmers' living and agricultural activities. This proposed model employs a structured parameter system comprising targets, state parameters, regulatory parameters, and evaluation parameters. This system can get insight into the status of the WFEE nexus at the farmer level using state parameters, induce tailored management and regulation measures using regulatory parameters, assess the effectiveness of various measures using the evaluation parameters, and finally provide decision support to enhance the health of the WFEE nexus. The findings from the research conducted in the Yong'an groundwater irrigation district demonstrated that the model accurately described the relationship between the WFEE nexus and farmers' activities in groundwater irrigation districts. Furthermore, the model responded strongly to a variety of improvement strategies, including adjustments in planting area, optimization of planting pattern, improvement of irrigation method, and implementation of agronomic measures. As a result, it provided farmers with decision support for applying agricultural management methods and addressing the WFEE nexus problem in groundwater irrigation areas.
0
Paper
Citation1
0
Save
0

Link between Plant Phosphate and Drought Stress Responses

Nidhi Kandhol et al.Jan 1, 2024
The menace of drought has persistently loomed over global crop production, posing a serious threat to agricultural sustainability. Research on drought stress highlights the important role of the phytohormone abscisic acid (ABA) in orchestrating plant responses to drought conditions. ABA regulates various drought/dehydration-responsive genes, initiates stomatal closure, and influences cellular responses to drought stress. Additionally, plants employ a phosphate starvation response (PSR) mechanism to manage phosphate (Pi) deficiency, with ABA playing a role in its regulation. However, despite intensive research in these fields, the precise connection among PSRs, drought stress, and ABA signaling still needs to be determined. Recently, PSR-related gene induction has been reported to occur before the induction of ABA-responsive genes under progressive mild drought. Mild drought decreases Pi uptake and contents in plants, triggering PSRs, which play an important role in plant growth during mild drought. Both ABA-responsive and PSR-related gene expression could indicate plant perception of external moisture conditions. Thus, integrating the information regarding their associated gene expression with soil moisture contents and thermographic data can enable timely irrigation optimization to mitigate the effect of drought on crop productivity.
Load More