AL
Amy Leonardson
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
4,475
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetics of gene expression and its effect on disease

Valur Emilsson et al.Mar 1, 2008
+32
B
G
V
0
Citation1,280
0
Save
0

An integrative genomics approach to infer causal associations between gene expression and disease

Eric Schadt et al.Jun 19, 2005
+18
J
X
E
A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.
0
Citation1,041
0
Save
0

Variations in DNA elucidate molecular networks that cause disease

Yanqing Chen et al.Mar 1, 2008
+19
S
L
Y
Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors. Complex human diseases result from the interplay of many genetic and environmental factors. To build up a picture of the factors contributing to one such disease, obesity, gene expression was evaluated as a quantitative trait in blood and adipose tissue samples from hundreds of Icelandic subjects aged 18 to 85. The results reveal a tendency to certain characteristic patterns of gene activation in the fatty tissues — though to a much lesser extent in the blood — of people with a higher body mass index. A transcriptional network constructed from the adipose tissue data has significant overlap with a network based on mouse adipose tissue data. Experimental support for the idea that complex diseases are emergent properties of molecular networks influenced by genes and environment comes from a study in mice. Mice were examined for disturbances in genetic expression networks that correlate with metabolic traits associated with obesity, diabetes and atherosclerosis. Three genes — Lpl, Lactb and Ppm1l — were identified as previously unknown obesity genes. This 'molecular network' approach raises the prospect that therapies might be directed at whole 'disease networks', rather than at one or two specific genes. Standard approaches to identify the genetic changes that lead to disease are reversed by examination of genetic networks for perturbations that are associated with disease states, and following up candidate genes from there. This begins with three genes in mice that lead to obesity when mutated, demonstrating that complex genetic–environmental traits can be dissected with this new approach.
0
Citation877
0
Save
0

Discovering Modes of Action for Therapeutic Compounds Using a Genome-Wide Screen of Yeast Heterozygotes

Pek Lum et al.Jan 1, 2004
+14
S
C
P
Modern medicine faces the challenge of developing safer and more effective therapies to treat human diseases. Many drugs currently in use were discovered without knowledge of their underlying molecular mechanisms. Understanding their biological targets and modes of action will be essential to design improved second-generation compounds. Here, we describe the use of a genome-wide pool of tagged heterozygotes to assess the cellular effects of 78 compounds in Saccharomyces cerevisiae. Specifically, lanosterol synthase in the sterol biosynthetic pathway was identified as a target of the antianginal drug molsidomine, which may explain its cholesterol-lowering effects. Further, the rRNA processing exosome was identified as a potential target of the cell growth inhibitor 5-fluorouracil. This genome-wide screen validated previously characterized targets or helped identify potentially new modes of action for over half of the compounds tested, providing proof of this principle for analyzing the modes of action of clinically relevant compounds.
0
Citation475
0
Save
0

Experimental annotation of the human genome using microarray technology

Daniel Shoemaker et al.Feb 15, 2001
+32
J
J
D
The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using ‘exon’ and ‘tiling’ arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.
0
Citation444
0
Save
0

Genetic Inheritance of Gene Expression in Human Cell Lines

Stephanie Monks et al.Nov 3, 2004
+6
H
A
S
Combining genetic inheritance information, for both molecular profiles and complex traits, is a promising strategy not only for detecting quantitative trait loci (QTLs) for complex traits but for understanding which genes, pathways, and biological processes are also under the influence of a given QTL. As a primary step in determining the feasibility of such an approach in humans, we present the largest survey to date, to our knowledge, of the heritability of gene-expression traits in segregating human populations. In particular, we measured expression for 23,499 genes in lymphoblastoid cell lines for members of 15 Centre d'Etude du Polymorphisme Humain (CEPH) families. Of the total set of genes, 2,340 were found to be expressed, of which 31% had significant heritability when a false-discovery rate of 0.05 was used. QTLs were detected for 33 genes on the basis of at least one P value <.000005. Of these, 13 genes possessed a QTL within 5 Mb of their physical location. Hierarchical clustering was performed on the basis of both Pearson correlation of gene expression and genetic correlation. Both reflected biologically relevant activity taking place in the lymphoblastoid cell lines, with greater coherency represented in Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathways than in Gene Ontology database pathways. However, more pathway coherence was observed in KEGG pathways when clustering was based on genetic correlation than when clustering was based on Pearson correlation. As more expression data in segregating populations are generated, viewing clusters or networks based on genetic correlation measures and shared QTLs will offer potentially novel insights into the relationship among genes that may underlie complex traits.
0
Citation358
0
Save