WY
Weiwei Yang
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
3,411
h-index:
31
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation

Weiwei Yang et al.Nov 4, 2011
The embryonic pyruvate kinase M2 (PKM2) isoform is highly expressed in human cancer. In contrast to the established role of PKM2 in aerobic glycolysis or the Warburg effect1,2,3, its non-metabolic functions remain elusive. Here we demonstrate, in human cancer cells, that epidermal growth factor receptor (EGFR) activation induces translocation of PKM2, but not PKM1, into the nucleus, where K433 of PKM2 binds to c-Src-phosphorylated Y333 of β-catenin. This interaction is required for both proteins to be recruited to the CCND1 promoter, leading to HDAC3 removal from the promoter, histone H3 acetylation and cyclin D1 expression. PKM2-dependent β-catenin transactivation is instrumental in EGFR-promoted tumour cell proliferation and brain tumour development. In addition, positive correlations have been identified between c-Src activity, β-catenin Y333 phosphorylation and PKM2 nuclear accumulation in human glioblastoma specimens. Furthermore, levels of β-catenin phosphorylation and nuclear PKM2 have been correlated with grades of glioma malignancy and prognosis. These findings reveal that EGF induces β-catenin transactivation via a mechanism distinct from that induced by Wnt/Wingless4 and highlight the essential non-metabolic functions of PKM2 in EGFR-promoted β-catenin transactivation, cell proliferation and tumorigenesis.
0
Citation877
0
Save
0

ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect

Weiwei Yang et al.Nov 25, 2012
Pyruvate kinase M2 (PKM2) is upregulated in multiple cancer types and contributes to the Warburg effect by unclear mechanisms. Here we demonstrate that EGFR-activated ERK2 binds directly to PKM2 Ile 429/Leu 431 through the ERK2 docking groove and phosphorylates PKM2 at Ser 37, but does not phosphorylate PKM1. Phosphorylated PKM2 Ser 37 recruits PIN1 for cis–trans isomerization of PKM2, which promotes PKM2 binding to importin α5 and translocating to the nucleus. Nuclear PKM2 acts as a coactivator of β-catenin to induce c-Myc expression, resulting in the upregulation of GLUT1, LDHA and, in a positive feedback loop, PTB-dependent PKM2 expression. Replacement of wild-type PKM2 with a nuclear translocation-deficient mutant (S37A) blocks the EGFR-promoted Warburg effect and brain tumour development in mice. In addition, levels of PKM2 Ser 37 phosphorylation correlate with EGFR and ERK1/2 activity in human glioblastoma specimens. Our findings highlight the importance of nuclear functions of PKM2 in the Warburg effect and tumorigenesis. Lu and colleagues delineate a pathway through which the PKM2 enzyme promotes aerobic glycolysis, known as the Warburg effect, in cancer cells. They show that EGFR-activated ERK phosphorylates PKM2, leading to its accumulation in the nucleus. Nuclear PKM2 subsequently promotes the c-Myc-dependent upregulation of genes involved in the Warburg effect, resulting in tumour growth.
0

Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis

Xinjian Li et al.Mar 1, 2016
It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis.
0

Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2

Liang Ji et al.Dec 30, 2016
Pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays an important role in tumor cell proliferation. Recent studies have reported that PKM2 also regulates apoptosis. However, the mechanisms underlying such a role of PKM2 remain elusive. Here we show that PKM2 translocates to mitochondria under oxidative stress. In the mitochondria, PKM2 interacts with and phosphorylates Bcl2 at threonine (T) 69. This phosphorylation prevents the binding of Cul3-based E3 ligase to Bcl2 and subsequent degradation of Bcl2. A chaperone protein, HSP90α1, is required for this function of PKM2. HSP90α1's ATPase activity launches a conformational change of PKM2 and facilitates interaction between PKM2 and Bcl2. Replacement of wild-type Bcl2 with phosphorylation-deficient Bcl2 T69A mutant sensitizes glioma cells to oxidative stress-induced apoptosis and impairs brain tumor formation in an orthotopic xenograft model. Notably, a peptide that is composed of the amino acid residues from 389 to 405 of PKM2, through which PKM2 binds to Bcl2, disrupts PKM2-Bcl2 interaction, promotes Bcl2 degradation and impairs brain tumor growth. In addition, levels of Bcl2 T69 phosphorylation, conformation-altered PKM2 and Bcl2 protein correlate with one another in specimens of human glioblastoma patients. Moreover, levels of Bcl2 T69 phosphorylation and conformation-altered PKM2 correlate with both grades and prognosis of glioma malignancy. Our findings uncover a novel mechanism through which mitochondrial PKM2 phosphorylates Bcl2 and inhibits apoptosis directly, highlight the essential role of PKM2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.
0

LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer

Fei Li et al.Jan 2, 2025
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
0
Citation1
0
Save
0

Failure mode and effects analysis-based strategies for controlling multidrug-resistant organism infections in cancer patients

Chunlin Wu et al.Nov 19, 2024
In the context of advancing medical procedures, postoperative infections in cancer patients, particularly those involving multidrug-resistant organisms, have become a significant clinical concern. This study aims to comprehensively and systematically evaluate the effectiveness of infection prevention and control for multidrug-resistant organisms (MDROs) in postoperative cancer patients using Failure Mode and Effects Analysis (FMEA). This study was conducted in a tertiary A-level cancer specialty hospital in China, employing Failure Mode and Effects Analysis (FMEA) to assess the risks of hospital infections. Intervention measures were implemented for high-risk and medium-high-risk factors. Through the hospital's infection information system, data on patients who underwent surgical treatment from 2017 to 2022 were extracted. Data from 2017 to 2019 served as the control group, and data from 2020 to 2022 as the intervention group, to compare the changes in hospital infection incidence and MDRO infection incidence before and after the intervention. Categorical data were described in terms of frequency and percentage. The chi-square test was utilized for statistical inference to assess the differences in infection rates before and after the intervention. Prior to the intervention (2017–2019), the incidence rate of hospital infections was 1.66%, which decreased to 1.22% after the intervention (2020–2022), showing a statistically significant difference (χ2 = 48.83, P < 0.001). The incidence rate of MDRO infections also decreased from 1.808‰ before the intervention to 1.136‰ after the intervention, with a statistically significant difference (χ2 = 11.417, P = 0.001). This study confirms the effectiveness of the FMEA method in preventing and controlling MDRO infections in postoperative cancer patients. It highlights the practicality and value of widespread adoption of this method, particularly in the context of the COVID-19 pandemic.
0

Enriched rehabilitation on brain functional connectivity in patients with post-stroke cognitive impairment

Yaping Huai et al.Jan 7, 2025
This study aims to observe the effect of enrichment rehabilitation (ER) on cognitive function in post-stroke patients and to clarify its underlying mechanism. Forty patients with post-stroke cognitive impairment (PSCI) meeting the inclusion criteria were randomly assigned to two groups: conventional medical rehabilitation (CM group) and ER intervention (ER group). All patients underwent assessments of overall cognitive function, attention function, and executive function within 24 h before the start of training and within 24 h after the 8 weeks of training. We investigated the altered resting-state functional connectivity (RSFC) with the right dorsolateral prefrontal cortex (DLPFC) in patients with PSCI following ER training through functional magnetic resonance imaging (fMRI). Additionally, twenty people undergoing routine physical examinations in the outpatient department of our hospital were selected as the healthy control (HC) group. Before training, both groups of PSCI patients exhibited significant impairment in overall cognitive function, attention function, and executive function compared to the HC group. However, there was no significant difference between the two PSCI patient groups. Following 8 weeks of treatment, both PSCI patient groups demonstrated substantial improvement in overall cognitive function, attention function, and executive function. Moreover, the ER group exhibited greater improvement after training compared to the CM group. Despite the improvements, the cognitive behavioral performance assessment scores of both PSCI patient groups remained lower than those of the HC group. RSFC analysis in the ER group revealed strengthened positive functional connectivity between the right DLPFC and the left superior frontal gyrus (SFG) and left anterior cingulate gyrus (ACG), along with decreased functional connectivity between the right DLPFC and the right superior temporal gyrus (STG) and right precentral gyrus post-ER intervention. ER intervention is more effective than conventional medical rehabilitation in improving the cognitive function of PSCI patients, potentially by augmenting the FC between the right DLPFC and dominant cognitive brain regions, such as the left SFG and left ACG while attenuating the FC between the right DLPFC and non-dominant hemisphere areas including the STG and precentral gyrus within the right hemisphere.