TA
Teresa Araújo
Author with expertise in Automated Analysis of Blood Cell Images
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,574
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Classification of breast cancer histology images using Convolutional Neural Networks

Teresa Araújo et al.Jun 1, 2017
Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the cost and increase the efficiency of this process. Conventional classification approaches rely on feature extraction methods designed for a specific problem based on field-knowledge. To overcome the many difficulties of the feature-based approaches, deep learning methods are becoming important alternatives. A method for the classification of hematoxylin and eosin stained breast biopsy images using Convolutional Neural Networks (CNNs) is proposed. Images are classified in four classes, normal tissue, benign lesion, in situ carcinoma and invasive carcinoma, and in two classes, carcinoma and non-carcinoma. The architecture of the network is designed to retrieve information at different scales, including both nuclei and overall tissue organization. This design allows the extension of the proposed system to whole-slide histology images. The features extracted by the CNN are also used for training a Support Vector Machine classifier. Accuracies of 77.8% for four class and 83.3% for carcinoma/non-carcinoma are achieved. The sensitivity of our method for cancer cases is 95.6%.
0

BACH: Grand challenge on breast cancer histology images

Guilherme Aresta et al.May 31, 2019
Breast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). BACH aimed at the classification and localization of clinically relevant histopathological classes in microscopy and whole-slide images from a large annotated dataset, specifically compiled and made publicly available for the challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. The submitted algorithms improved the state-of-the-art in automatic classification of breast cancer with microscopy images to an accuracy of 87%. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publicly available as to promote further improvements to the field of automatic classification in digital pathology.
0

Deep Neural Networks for Automated Outer Plexiform Layer Subsidence Detection on Retinal OCT of Patients With Intermediate AMD

Guilherme Aresta et al.Jun 14, 2024
Purpose: The subsidence of the outer plexiform layer (OPL) is an important imaging biomarker on optical coherence tomography (OCT) associated with early outer retinal atrophy and a risk factor for progression to geographic atrophy in patients with intermediate age-related macular degeneration (AMD). Deep neural networks (DNNs) for OCT can support automated detection and localization of this biomarker. Methods: The method predicts potential OPL subsidence locations on retinal OCTs. A detection module (DM) infers bounding boxes around subsidences with a likelihood score, and a classification module (CM) assesses subsidence presence at the B-scan level. Overlapping boxes between B-scans are combined and scored by the product of the DM and CM predictions. The volume-wise score is the maximum prediction across all B-scans. One development and one independent external data set were used with 140 and 26 patients with AMD, respectively. Results: The system detected more than 85% of OPL subsidences with less than one false-positive (FP)/scan. The average area under the curve was 0.94 ± 0.03 for volume-level detection. Similar or better performance was achieved on the independent external data set. Conclusions: DNN systems can efficiently perform automated retinal layer subsidence detection in retinal OCT images. In particular, the proposed DNN system detects OPL subsidence with high sensitivity and a very limited number of FP detections. Translational Relevance: DNNs enable objective identification of early signs associated with high risk of progression to the atrophic late stage of AMD, ideally suited for screening and assessing the efficacy of the interventions aiming to slow disease progression.