SR
Sylvia Ratnasamy
Author with expertise in Content-Centric Networking for Information Delivery
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(50% Open Access)
Cited by:
16,363
h-index:
67
/
i10-index:
111
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GHT

Sylvia Ratnasamy et al.Sep 28, 2002
Making effective use of the vast amounts of data gathered by large-scale sensor networks will require scalable, self-organizing, and energy-efficient data dissemination algorithms. Previous work has identified data-centric routing as one such method. In an asso-ciated position paper [23], we argue that a companion method, data-centric storage (DCS), is also a useful approach. Under DCS, sensed data are stored at a node determined by the name associated with the sensed data. In this paper, we describe GHT, a Geographic Hash Table system for DCS on sensornets. GHT hashes keys into geographic coordi-nates, and stores a key-value pair at the sensor node geographically nearest the hash of its key. The system replicates stored data lo-cally to ensure persistence when nodes fail. It uses an efficient consistency protocol to ensure that key-value pairs are stored at the appropriate nodes after topological changes. And it distributes load throughout the network using a geographic hierarchy. We evaluate the performance of GHT as a DCS system in simulation against two other dissemination approaches. Our results demonstrate that GHT is the preferable approach for the application workloads predicted in [23], offers high data availability, and scales to large sensornet deployments, even when nodes fail or are mobile.
0

Topologically-aware overlay construction and server selection

Sylvia Ratnasamy et al.Jun 25, 2003
A number of large-scale distributed Internet applications could potentially benefit from some level of knowledge about the relative proximity between its participating host nodes. For example, the performance of large overlay networks could be improved if the application-level connectivity between the nodes in these networks is congruent with the underlying IP-level topology. Similarly, in the case of replicated Web content, client nodes could use topological information in selecting one of multiple available servers. For such applications, one need not find the optimal solution in order to achieve significant practical benefits. Thus, these applications, and presumably others like them, do not require exact topological information and can instead use sufficiently informative hints about the relative positions of Internet hosts. In this paper, we present a binning scheme whereby nodes partition themselves into bins such that nodes that fall within a given bin are relatively close to one another in terms of network latency. Our binning strategy is simple (requiring minimal support from any measurement infrastructure), scalable (requiring no form of global knowledge, each node only needs knowledge of a small number of well-known landmark nodes) and completely distributed (requiring no communication or cooperation between the nodes being binned). We apply this binning strategy to the two applications mentioned above: overlay network construction and server selection. We test our binning strategy and its application using simulation and Internet measurement traces. Our results indicate that the performance of these applications can be significantly improved by even the rather coarse-grained knowledge of topology offered by our binning scheme.
Load More