NM
N. Masetti
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
6,165
h-index:
62
/
i10-index:
217
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger

E. Pian et al.Oct 16, 2017
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named "macronovae" or "kilonovae", are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.
0

GRB 090423 at a redshift of z ≈ 8.1

R. Salvaterra et al.Oct 1, 2009
Two groups present redshift determinations and other spectroscopic data for the γ-ray burst GRB 090423 — now the earliest and most distant astronomical object known. Salvaterra et al. report its initial detection with the Swift satellite on 23 April 2009, and a redshift determination with the Telescopio Nazionale Galileo on La Palma 14 hours after the burst, obtaining z ≈ 8.1. Tanvir et al. used the United Kingdom Infrared Telescope, Hawaii, from about 20 minutes after the burst and arrive at z ≈ 8.2. The previous highest redshift known for any object was z = 6.96 for a Lyman-α emitting galaxy. These measurements imply that massive stars were being produced and were dying as γ-ray bursts as early as about 600 million years after the Big Bang, and that their properties are very similar to those stars producing γ-ray bursts 10 billion years later. Long-duration γ-ray bursts (GRBs), thought to result from the explosions of certain massive stars, are bright enough that some of them should be observable out to redshifts of z > 20. So far, the highest redshift measured for any object has been z = 6.96, for a Lyman-α emitting galaxy. Here, and in an accompanying paper, GRB 090423 is reported to lie at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs approximately 620 million years after the Big Bang. Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = . This burst happened when the Universe was only about 4 per cent of its current age3. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.
0

LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

J. Fynbo et al.Nov 30, 2009
(Abridged). We present a sample of 77 optical afterglows (OAs) of Swift detected GRBs for which spectroscopic follow-up observations have been secured. We provide linelists and equivalent widths for all detected lines redward of Ly-alpha. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray selected sample of Swift bursts with optimal conditions for ground-based follow up from the period March 2005 to September 2008; 146 bursts fulfill our sample criteria. We derive the redshift distribution for this sample and conclude that less than 19% of Swift bursts are at z>7. We compare the high energy properties for three sub-samples of bursts in the sample: i) bursts with redshifts measured from OA spectroscopy, ii) bursts with detected OA, but no OA-based redshift, and iii) bursts with no detection of the OA. The bursts in group i) have significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fraction of dark bursts is 14% in group i), 38% in group ii) and > 39% in group iii). From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight-lines. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular DLAs. On average GRB absorbers are characterized by significantly stronger EWs for HI as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. Based on the z>2 bursts in the sample we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies.