MH
Michael Hirshman
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(72% Open Access)
Cited by:
13,709
h-index:
82
/
i10-index:
150
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Role of AMP-activated protein kinase in mechanism of metformin action

Gaochao Zhou et al.Oct 15, 2001
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin’s beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin’s inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
0

Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

Kristin Stanford et al.Dec 10, 2012
Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lower body weight, decreased fat mass, and a complete reversal of high-fat diet–induced insulin resistance. Increasing the quantity of BAT transplanted into recipient mice further improved the metabolic effects of transplantation. BAT transplantation increased insulin-stimulated glucose uptake in vivo into endogenous BAT, white adipose tissue (WAT), and heart muscle but, surprisingly, not skeletal muscle. The improved metabolic profile was lost when the BAT used for transplantation was obtained from Il6–knockout mice, demonstrating that BAT-derived IL-6 is required for the profound effects of BAT transplantation on glucose homeostasis and insulin sensitivity. These findings reveal a previously under-appreciated role for BAT in glucose metabolism.
0

Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes

Nicolas Musi et al.Jul 1, 2002
Metformin is an effective hypoglycemic drug that lowers blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in skeletal muscle; however, the molecular site of metformin action is not well understood. AMP-activated protein kinase (AMPK) activity increases in response to depletion of cellular energy stores, and this enzyme has been implicated in the stimulation of glucose uptake into skeletal muscle and the inhibition of liver gluconeogenesis. We recently reported that AMPK is activated by metformin in cultured rat hepatocytes, mediating the inhibitory effects of the drug on hepatic glucose production. In the present study, we evaluated whether therapeutic doses of metformin increase AMPK activity in vivo in subjects with type 2 diabetes. Metformin treatment for 10 weeks significantly increased AMPK α2 activity in the skeletal muscle, and this was associated with increased phosphorylation of AMPK on Thr172 and decreased acetyl-CoA carboxylase-2 activity. The increase in AMPK α2 activity was likely due to a change in muscle energy status because ATP and phosphocreatine concentrations were lower after metformin treatment. Metformin-induced increases in AMPK activity were associated with higher rates of glucose disposal and muscle glycogen concentrations. These findings suggest that the metabolic effects of metformin in subjects with type 2 diabetes may be mediated by the activation of AMPK α2.
0

Evidence for 5′AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport

Tatsuya Hayashi et al.Aug 1, 1998
The intracellular signaling proteins that lead to exercise-stimulated glucose transport in skeletal muscle have not been identified, although it is clear that there are separate signaling mechanisms for exercise- and insulinstimulated glucose transport. We have hypothesized that the 5′AMP-activated protein kinase (AMPK) functions as a signaling intermediary in exercise-stimulated glucose uptake. This hypothesis was based on recent studies showing the following: 1) muscle contraction increases AMPK activity and 2) perfusion of rat hindlimb skeletal muscles with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a compound that results in increased AMPK activity, increased insulin-stimulated glucose uptake. In the current study, isolated rat epitrochlearis muscles were treated to contract in vitro (via electrical stimulation for 10 min) and/or incubated in the absence or presence of AICAR (2 mmol/l), insulin (1 μmol/1), or wortmannin (100 nmolA). Both contraction and AICAR significantly increased AMPK activity, while the enzyme was not activated by insulin. AICAR, contraction, and insulin all increased 3-O-methylglucose (3MG) transport by threefold to fivefold above basal. The phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin completely blocked insulin-stimulated transport, but did not inhibit AICAR- or contraction-stimulated transport. The increase in glucose transport with the combination of maximal AICAR plus maximal insulin treatments was partially additive, suggesting that these stimuli increase glucose transport by different mechanisms. In contrast, there was no additive effect on glucose transport with the combination of AICAR plus contraction. These data suggest that AICAR and contraction stimulate glucose transport by a similar insulin-independent signaling mechanism and are consistent with the hypothesis that AMPK is involved in exercise-stimulated glucose uptake.
0

5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle.

E. Kurth-Kraczek et al.Aug 1, 1999
It has previously been reported that exercise causes an increase in glucose uptake in skeletal muscle and also an increase in 5' AMP-activated protein kinase (AMPK) activity. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICA-riboside), an analog of adenosine, is taken up into cells and phosphorylated to form AICA-riboside monophosphate (ZMP), which can also activate AMPK. This study was designed to determine whether the increase in glucose uptake observed with AMPK activation by AICA-riboside is due to GLUT4 translocation from an intracellular location to the plasma membranes, similar to that seen in response to contraction. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine erythrocytes, 8 mmol/l glucose, and +/-2 mmol/AICA-riboside or +/-60 nmol/l insulin. Perfusion medium containing AICA-riboside was found to significantly increase AMPK activity, glucose uptake, and GLUT4 translocation in skeletal muscle above basal levels. Insulin-perfused muscles showed significant increases in glucose uptake and GLUT4 translocation, but AMPK activation was not significantly changed from basal levels. These results provide evidence that the increased glucose uptake observed with AMPK activation by AICA-riboside in perfused rat hindlimb muscles is due to an increase in the translocation of GLUT4 to surface membranes.
0

Role of AMP-activated protein kinase in mechanism of metformin action

Gaochao Zhou et al.Oct 15, 2001
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin’s beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin’s inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
0

Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism.

Tatsuya Hayashi et al.Apr 1, 2000
5'AMP-activated protein kinase (AMPK) can be activated in response to cellular fuel depletion and leads to switching off ATP-consuming pathways and switching on ATP-regenerating pathways in many cell types. We have hypothesized that AMPK is a central mediator of insulin-independent glucose transport, which enables fuel-depleted muscle cells to take up glucose for ATP regeneration under conditions of metabolic stress. To test this hypothesis, rat epitrochlearis muscles were isolated and incubated in vitro under several conditions that evoke metabolic stress accompanied by intracellular fuel depletion. Rates of glucose transport in the isolated muscles were increased by all of these conditions, including contraction (5-fold above basal), hypoxia (8-fold), 2,4-dinotrophenol (11-fold), rotenone (7-fold), and hyperosmolarity (8-fold). All of these stimuli simultaneously increased both alpha1 and alpha2 isoform-specific AMPK activity. There was close correlation between alpha1 (r2 = 0.72) and alpha2 (r2 = 0.67) AMPK activities and the rate of glucose transport, irrespective of the metabolic stress used, all of which compromised muscle fuel status as judged by ATP, phosphocreatine, and glycogen content. 5-Aminoimidazole-4-carboxamide ribonucleoside, a pharmacological AMPK activator that is metabolized to an AMP-mimetic ZMP, also increased both glucose transport and AMPK activity but did not change fuel status. Insulin stimulated glucose transport by 6.5-fold above basal but did not affect AMPK activity. These results suggest that the activation of AMPK may be a common mechanism leading to insulin-independent glucose transport in skeletal muscle under conditions of metabolic stress.
Load More