PB
Paola Bonfante
Author with expertise in Mycorrhizal Fungi and Plant Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(92% Open Access)
Cited by:
4,326
h-index:
94
/
i10-index:
335
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Anne‐Sophie Denommé‐Pichon et al.Nov 25, 2013
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
0
Citation730
0
Save
0

Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

Francis Martin et al.Mar 28, 2010
The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.
0
Citation635
0
Save
0

Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus inMedicago truncatulaRoot Epidermal Cells before Infection[W]

Andrea Genre et al.Nov 11, 2005
Abstract The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed.
0
Citation473
0
Save
0

Short‐chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone

Andrea Genre et al.Feb 6, 2013
The primary objective of this study was to identify the molecular signals present in arbuscular mycorrhizal (AM) germinated spore exudates (GSEs) responsible for activating nuclear Ca(2+) spiking in the Medicago truncatula root epidermis. Medicago truncatula root organ cultures (ROCs) expressing a nuclear-localized cameleon reporter were used as a bioassay to detect AM-associated Ca(2+) spiking responses and LC-MS to characterize targeted molecules in GSEs. This approach has revealed that short-chain chitin oligomers (COs) can mimic AM GSE-elicited Ca(2+) spiking, with maximum activity observed for CO4 and CO5. This spiking response is dependent on genes of the common SYM signalling pathway (DMI1/DMI2) but not on NFP, the putative Sinorhizobium meliloti Nod factor receptor. A major increase in the CO4/5 concentration in fungal exudates is observed when Rhizophagus irregularis spores are germinated in the presence of the synthetic strigolactone analogue GR24. By comparison with COs, both sulphated and nonsulphated Myc lipochito-oligosaccharides (LCOs) are less efficient elicitors of Ca(2+) spiking in M. truncatula ROCs. We propose that short-chain COs secreted by AM fungi are part of a molecular exchange with the host plant and that their perception in the epidermis leads to the activation of a SYM-dependent signalling pathway involved in the initial stages of fungal root colonization.
0
Citation450
0
Save
0

Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach

Erica Lumini et al.Nov 18, 2009
Summary The biodiversity of arbuscular mycorrhizal fungi (AMF) communities present in five Sardinian soils (Italy) subjected to different land‐use (tilled vineyard, covered vineyard, pasture, managed meadow and cork‐oak formation) was analysed using a pyrosequencing‐based approach for the first time. Two regions of the 18S ribosomal RNA gene were considered as molecular target. The pyrosequencing produced a total of 10924 sequences: 6799 from the first and 4125 from the second target region. Among these sequences, 3189 and 1003 were selected to generate operational taxonomic units (OTUs) and to evaluate the AMF community richness and similarity: 117 (37 of which were singletons) and 28 (nine of which were singletons) unique AMF OTUs were detected respectively. Within the Glomeromycota OTUs, those belonging to the Glomerales order were dominant in all the soils. Diversisporales OTUs were always detected, even though less frequently, while Archaeosporales and Paraglomerales OTUs were exclusive of the pasture soil. Eleven OTUs were shared by all the soils, but each of the five AMF communities showed particular features, suggesting a meaningful dissimilarity among the Glomeromycota populations. The environments with low inputs (pasture and covered vineyard) showed a higher AMF biodiversity than those subjected to human input (managed meadow and tilled vineyard). A reduction in AMF was found in the cork‐oak formation because other mycorrhizal fungal species, more likely associated to trees and shrubs, were detected. These findings reinforce the view that AMF biodiversity is influenced by both human input and ecological traits, illustrating a gradient of AMF communities which mirror the land‐use gradient. The high number of sequences obtained by the pyrosequencing strategy has provided detailed information on the soil AMF assemblages, thus offering a source of light to shine on this crucial soil microbial group.
0
Citation364
0
Save
0

The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont

Émilie Tisserant et al.Nov 16, 2011
• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.
0
Citation321
0
Save
0

A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi

Mike Guether et al.Mar 27, 2009
Abstract In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4 + seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4 +. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake.
0
Citation310
0
Save
0

Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of BothMedicago truncatulaandDaucus carota

Andrea Genre et al.May 1, 2008
Arbuscular mycorrhizas (AM) are widespread, ancient endosymbiotic associations that contribute significantly to soil nutrient uptake in plants. We have previously shown that initial fungal penetration of the host root is mediated via a specialized cytoplasmic assembly called the prepenetration apparatus (PPA), which directs AM hyphae through the epidermis (Genre et al., 2005). In vivo confocal microscopy studies performed on Medicago truncatula and Daucus carota, host plants with different patterns of AM colonization, now reveal that subsequent intracellular growth across the root outer cortex is also PPA dependent. On the other hand, inner root cortical colonization leading to arbuscule development involves more varied and complex PPA-related mechanisms. In particular, a striking alignment of polarized PPAs can be observed in adjacent inner cortical cells of D. carota, correlating with the intracellular root colonization strategy of this plant. Ultrastructural analysis of these PPA-containing cells reveals intense membrane trafficking coupled with nuclear enlargement and remodeling, typical features of arbusculated cells. Taken together, these findings imply that prepenetration responses are both conserved and modulated throughout the AM symbiosis as a function of the different stages of fungal accommodation and the host-specific pattern of root colonization. We propose a model for intracellular AM fungal accommodation integrating peri-arbuscular interface formation and the regulation of functional arbuscule development.
0
Citation299
0
Save
0

Genome‐wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus

Mike Guether et al.Jan 15, 2009
* Arbuscular mycorrhizas (AMs) contribute significantly to soil nutrient uptake in plants. As a consequence of the fungal colonization and of the deep reorganization shown by arbusculated cells, important impacts on root transcriptome are expected. * An Affymetrix GeneChip with 50,000 probe-sets and real-time RT-PCR allowed us to detect transcriptional changes triggered in Lotus japonicus by the AM fungus Gigaspora margarita, when arbuscules are at their maximum (28 d postinoculation (dpi)). An early time (4 dpi) was selected to differentiate genes potentially involved in signaling and/or in colonization of outer tissues. * A large number (75 out of 558) of mycorrhiza-induced genes code for proteins involved in protein turnover, membrane dynamics and cell wall synthesis, while many others are involved in transport (47) or transcription (24). Induction of a subset (24 genes) of these was tested and confirmed by qRT-PCR, and transcript location in arbusculated cells was demonstrated for seven genes using laser-dissected cells. * When compared with previously published papers, the transcript profiles indicate the presence of a core set of responsive genes (25) that seem to be conserved irrespective of the symbiotic partner identity.
0
Citation296
0
Save
Load More