KZ
Ke Zhang
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
2,586
h-index:
24
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The C9orf72 repeat expansion disrupts nucleocytoplasmic transport

Ke Zhang et al.Aug 24, 2015
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention. A candidate-based genetic screen in Drosophila expressing 30 G4C2-repeat-containing RNAs finds that RanGAP, a key regulator of nucleocytoplasmic transport, is a potent suppressor of neurodegeneration; the defects caused by the G4C2 repeat expansions can be rescued with antisense oligonucleotides or small molecules targeting the G-quadruplexes. The most common cause of the debilitating disease amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion GGGGCC (G4C2) in the C9orf72 gene. Two studies in this issue use contrasting methods to arrive at a molecular mechanism that may cause a familial form of the disease. Using a candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats (Ke Zhang et al.) or an unbiased genetic screen in Drosophila expressing 8, 28 or 58 G4C2 repeat-containing transcripts (Brian Freibaum et al.), the two groups sought genes that enhance or suppress the disease phenotype. Zhang et al. identify the gene encoding RanGAP, a key regulator of nucleocytoplasmic transport, and Freibaum et al. identifies genes that encode components of the nuclear pore and the nucleocytoplasmic transport machinery. Both papers show deficits in nucleocytoplasmic transport in Drosophila cells expressing G4C2 repeats and in iPSC-derived neurons from ALS patients. Zhang et al. show that these defects can be rescued with antisense oligonucleotides or small molecules targeting the G-quadruplexes.
0
Citation884
0
Save
76

A reference induced pluripotent stem cell line for large-scale collaborative studies

Caroline Pantazis et al.Dec 17, 2021
Abstract Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate iPSC lines and deeply characterised their genetic properties using whole genome sequencing, their genomic stability upon CRISPR/Cas9-based gene editing, and their phenotypic properties including differentiation to commonly-used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and hundreds of its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field. Summary The authors of this collaborative study deeply characterized human induced pluripotent stem cell (iPSC) lines to rationally select a clonally-derived cell line that performs well across multiple modalities. KOLF2.1J was identified as a candidate reference cell line based on single-cell analysis of its gene expression in the pluripotent state, whole genome sequencing, genomic stability after highly efficient CRISPR-mediated gene editing, integrity of the p53 pathway, and the efficiency with which it differentiated into multiple target cell populations. Since it is deeply characterized and can be readily acquired, KOLF2.1J is an attractive reference cell line for groups working with iPSCs. Graphical abstract
76
Citation9
0
Save
18

TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS

Kathleen Cunningham et al.Jun 26, 2020
Abstract Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which impaired NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified Ref(2)p/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.