JF
James Fujimoto
Author with expertise in Optical Coherence Tomography Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
60
(57% Open Access)
Cited by:
46,002
h-index:
139
/
i10-index:
533
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Imaging of Macular Diseases with Optical Coherence Tomography

Carmen Puliafito et al.Feb 1, 1995
Background/Purpose: To assess the potential of a new diagnostic technique called optical coherence tomography for imaging macular disease. Optical coherence tomography is a novel noninvasive, noncontact imaging modality which produces high depth resolution (10 μm cross-sectional tomographs of ocular tissue. It is analogous to ultrasound, except that optical rather than acoustic reflectivity is measured. Methods: Optical coherence tomography images of the macula were obtained in 51 eyes of 44 patients with selected macular diseases. Imaging is performed in a manner compatible with slit-lamp indirect biomicroscopy so that high-resolution optical tomography may be accomplished simultaneously with normal ophthalmic examination. The time-of-flight delay of light backscattered from different layers in the retina is determined using low-coherence interferometry. Cross-sectional tomographs of the retina profiling optical reflectivity versus distance into the tissue are obtained in 2.5 seconds and with a longitudinal resolution of 10 μm. Results: Correlation of fundus examination and fluorescein angiography with optical coherence tomography tomographs was demonstrated in 12 eyes with the following pathologies: full- and partial-thickness macular hole, epiretinal membrane, macular edema, intraretinal exudate, idiopathic central serous chorioretinopathy, and detachments of the pigment epithelium and neurosensory retina. Conclusion: Optical coherence tomography is potentially a powerful tool for detecting and monitoring a variety of macular diseases, including macular edema, macular holes, and detachments of the neurosensory retina and pigment epithelium. Background/Purpose: To assess the potential of a new diagnostic technique called optical coherence tomography for imaging macular disease. Optical coherence tomography is a novel noninvasive, noncontact imaging modality which produces high depth resolution (10 μm cross-sectional tomographs of ocular tissue. It is analogous to ultrasound, except that optical rather than acoustic reflectivity is measured. Methods: Optical coherence tomography images of the macula were obtained in 51 eyes of 44 patients with selected macular diseases. Imaging is performed in a manner compatible with slit-lamp indirect biomicroscopy so that high-resolution optical tomography may be accomplished simultaneously with normal ophthalmic examination. The time-of-flight delay of light backscattered from different layers in the retina is determined using low-coherence interferometry. Cross-sectional tomographs of the retina profiling optical reflectivity versus distance into the tissue are obtained in 2.5 seconds and with a longitudinal resolution of 10 μm. Results: Correlation of fundus examination and fluorescein angiography with optical coherence tomography tomographs was demonstrated in 12 eyes with the following pathologies: full- and partial-thickness macular hole, epiretinal membrane, macular edema, intraretinal exudate, idiopathic central serous chorioretinopathy, and detachments of the pigment epithelium and neurosensory retina. Conclusion: Optical coherence tomography is potentially a powerful tool for detecting and monitoring a variety of macular diseases, including macular edema, macular holes, and detachments of the neurosensory retina and pigment epithelium.
0

Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation

Maciej Wojtkowski et al.May 31, 2004
Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the few micron scale. Fourier domain detection methods enable more than an order of magnitude increase in imaging speed and sensitivity, thus overcoming the sensitivity limitations inherent in ultrahigh-resolution OCT using standard time domain detection. Fourier domain methods also provide direct access to the spectrum of the optical signal. This enables automatic numerical dispersion compensation, a key factor in achieving ultrahigh image resolutions. We present ultrahigh-resolution, high-speed Fourier domain OCT imaging with an axial resolution of 2.1 ìm in tissue and 16,000 axial scans per second at 1024 pixels per axial scan. Ultrahigh-resolution spectral domain OCT is shown to provide a ~100x increase in imaging speed when compared to ultrahigh-resolution time domain OCT. In vivo imaging of the human retina is demonstrated. We also present a general technique for automatic numerical dispersion compensation, which is applicable to spectral domain as well as swept source embodiments of Fourier domain OCT.
0

Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography

Robert Huber et al.Apr 17, 2006
We demonstrate a new technique for frequency-swept laser operation--Fourier domain mode locking (FDML)--and its application for swept-source optical coherence tomography (OCT) imaging. FDML is analogous to active laser mode locking for short pulse generation, except that the spectrum rather than the amplitude of the light field is modulated. High-speed, narrowband optical frequency sweeps are generated with a repetition period equal to the fundamental or a harmonic of cavity round-trip time. An FDML laser is constructed using a long fiber ring cavity, a semiconductor optical amplifier, and a tunable fiber Fabry-Perot filter. Effective sweep rates of up to 290 kHz are demonstrated with a 105 nm tuning range at 1300 nm center wavelength. The average output power is 3mW directly from the laser and 20 mW after post-amplification. Using the FDML laser for swept-source OCT, sensitivities of 108 dB are achieved and dynamic linewidths are narrow enough to enable imaging over a 7 mm depth with only a 7.5 dB decrease in sensitivity. We demonstrate swept-source OCT imaging with acquisition rates of up to 232,000 axial scans per second. This corresponds to 906 frames/second with 256 transverse pixel images, and 3.5 volumes/second with a 256x128x256 voxel element 3-DOCT data set. The FDML laser is ideal for swept-source OCT imaging, thus enabling high imaging speeds and large imaging depths.
0

IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY

Richard Spaide et al.Oct 2, 2015
In Brief Purpose: To describe image artifacts of optical coherence tomography (OCT) angiography and their underlying causative mechanisms. To establish a common vocabulary for the artifacts observed. Methods: The methods by which OCT angiography images are acquired, generated, and displayed are reviewed as are the mechanisms by which each or all of these methods can produce extraneous image information. A common set of terminology is proposed and used. Results: Optical coherence tomography angiography uses motion contrast to image blood flow and thereby images the vasculature without the need for a contrast agent. Artifacts are very common and can arise from the OCT image acquisition, intrinsic characteristics of the eye, eye motion, image processing, and display strategies. Optical coherence tomography image acquisition for angiography takes more time than simple structural scans and necessitates trade-offs in flow resolution, scan quality, and speed. An important set of artifacts are projection artifacts in which images of blood vessels seem at erroneous locations. Image processing used for OCT angiography can alter vascular appearance through segmentation defects, and because of image display strategies can give false impressions of the density and location of vessels. Eye motion leads to discontinuities in displayed data. Optical coherence tomography angiography artifacts can be detected by interactive evaluation of the images. Conclusion: Image artifacts are common and can lead to incorrect interpretations of OCT angiography images. Because of the quantity of data available and the potential for artifacts, physician interaction in viewing the image data will be required, much like what happens in modern radiology practice. Optical coherence tomography angiography is a noninvasive technique that can provide images of retinal and choroidal vascularization. Artifacts are common and originate in relation to image acquisition, intrinsic ocular characteristics, eye motion, image processing, and display strategies. Recognizing these artifacts is important in avoiding misinterpretation of diagnostic images.
Load More