MW
Michael Wagner
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
1,844
h-index:
21
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Testing Association of Statistically Inferred Haplotypes with Discrete and Continuous Traits in Samples of Unrelated Individuals

Dmitri Zaykin et al.Jan 1, 2002
There have been increasing efforts to relate drug efficacy and disease predisposition with genetic polymorphisms. We present statistical tests for association of haplotype frequencies with discrete and continuous traits in samples of unrelated individuals. Haplotype frequencies are estimated through the expectation-maximization algorithm, and each individual in the sample is expanded into all possible haplotype configurations with corresponding probabilities, conditional on their genotype. A regression-based approach is then used to relate inferred haplotype probabilities to the response. The relationship of this technique to commonly used approaches developed for case-control data is discussed. We confirm the proper size of the test under H(0) and find an increase in power under the alternative by comparing test results using inferred haplotypes with single-marker tests using simulated data. More importantly, analysis of real data comprised of a dense map of single nucleotide polymorphisms spaced along a 12-cM chromosomal region allows us to confirm the utility of the haplotype approach as well as the validity and usefulness of the proposed statistical technique. The method appears to be successful in relating data from multiple, correlated markers to response.
0
Citation670
0
Save
0

Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups

Nita Limdi et al.Mar 5, 2010
Abstract Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 −1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 −1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 −1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the −1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.
0
Citation364
0
Save
0

Genomewide association for schizophrenia in the CATIE study: results of stage 1

Patrick Sullivan et al.Mar 18, 2008
Little is known for certain about the genetics of schizophrenia. The advent of genomewide association has been widely anticipated as a promising means to identify reproducible DNA sequence variation associated with this important and debilitating disorder. A total of 738 cases with DSM-IV schizophrenia (all participants in the CATIE study) and 733 group-matched controls were genotyped for 492 900 single-nucleotide polymorphisms (SNPs) using the Affymetrix 500K two-chip genotyping platform plus a custom 164K fill-in chip. Following multiple quality control steps for both subjects and SNPs, logistic regression analyses were used to assess the evidence for association of all SNPs with schizophrenia. We identified a number of promising SNPs for follow-up studies, although no SNP or multimarker combination of SNPs achieved genomewide statistical significance. Although a few signals coincided with genomic regions previously implicated in schizophrenia, chance could not be excluded. These data do not provide evidence for the involvement of any genomic region with schizophrenia detectable with moderate sample size. However, a planned genomewide association study for response phenotypes and inclusion of individual phenotype and genotype data from this study in meta-analyses hold promise for eventual identification of susceptibility and protective variants.
0
Citation354
0
Save
0

Identifying individual risk rare variants using protein structure-guided local tests (POINT)

Rachel West et al.May 29, 2018
Rare variants are of increasing interest to genetic association studies because of their etiological contributions to human complex diseases. Due to the rarity of the mutant events, rare variants are routinely analyzed on an aggregate level. While aggregation analyses improve the detection of global-level signal, they are not able to pinpoint causal variants within a variant set. To perform inference on a localized level, additional information, e.g., biological annotation, is often needed to boost the information content of a rare variant. Following the observation that important variants are likely to cluster together on functional domains, we propose a protein structure guided local test (POINT) to provide variant-specific association information using structure-guided aggregation of signal. Constructed under a kernel machine framework, POINT performs local association testing by borrowing information from neighboring variants in the 3-dimensional protein space in a data-adaptive fashion. Besides merely providing a list of promising variants, POINT assigns each variant a p-value to permit variant ranking and prioritization. We assess the selection performance of POINT using simulations and illustrate how it can be used to prioritize individual rare variants in PCSK9 associated with low-density lipoprotein in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial data.