IM
Ilya Mandel
Author with expertise in Observation and Study of Gravitational Waves Phenomenon
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(96% Open Access)
Cited by:
9,515
h-index:
94
/
i10-index:
262
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

J. Veitch et al.Feb 6, 2015
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star black hole binary and a binary black hole, where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.
0

DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

Michał Dominik et al.Oct 16, 2012
The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from populations synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include: updated wind mass loss rates (allowing for stellar mass black holes up to $80 \msun$), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2--3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed "mass gap"). Our findings include: (i) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (ii) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (iii) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (iv) Certain combinations of parameters underpredict the Galactic NS-NS merger rate, and can be ruled out. {\em (v)} Models incorporating delayed supernovae do not agree with the observed NS/BH "mass gap", in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper we will present the detection rates for gravitational wave observatories, using up-to-date signal waveforms and sensitivity curves.
0
Citation655
0
Save
0

The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars

N. Tanvir et al.Oct 16, 2017
Abstract We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a “kilonova/macronova” powered by the radioactive decay of massive neutron-rich nuclides created via r -process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared  K s -band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r -process peak (atomic masses  A ≈ 195 ). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.
0

THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES

Will Farr et al.Oct 24, 2011
We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically—as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution—and non-parametrically—as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a "gap" between the most massive neutron stars and the least massive black holes by considering the value, M1%, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M1%; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M1%>4.3 M☉ with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M1%>4.5 M☉ with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the underlying mass distribution. The results on the combined sample of low- and high-mass systems are in qualitative agreement with Fryer & Kalogera, although the presence of a mass gap remains theoretically unexplained.
0

Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

Ilya Mandel et al.Feb 17, 2016
We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4–11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc−3 yr−1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.
0

DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES

Michał Dominik et al.Nov 26, 2013
The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the "local" Universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS) and black hole-black hole (BH-BH) systems) are considered to be the most promising gravitational wave sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma ray bursts (GRBs), and may also be associated with kilonovae. In this paper we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (i) in most cases NS-NS systems dominate the merger rates in the local Universe, while BH-BH mergers dominate at high redshift; (ii) BH-NS mergers are less frequent than other sources per unit volume, for all time; and (iii) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by gravitational wave telescopes.
Load More