MI
Martijn Iersel
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,865
h-index:
19
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The BioPAX community standard for pathway data sharing

Emek Demir et al.Sep 1, 2010
Incompatible data storage formats have hindered the sharing and analyses of digital representations of biological pathways. BioPAX is a standardized language supported by >40 databases and software tools for exchanging pathway data. Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.
0
Citation720
0
Save
0

WikiPathways: Pathway Editing for the People

Alexander Pico et al.Jul 16, 2008
The exponential growth of diverse types of biological data presents the research community with an unprecedented challenge and opportunity. The challenge is to stay afloat in the flood of biological data, keeping it as accessible, up-to-date, and integrated as possible. The opportunity is to cultivate new models of data curation and exchange that take advantage of direct participation by a greater portion of the community. This combination of challenge and opportunity is especially relevant to the task of collecting biological pathway information. Pathways are critical to understanding the functions of individual genes and proteins in terms of systems and processes that contribute to normal physiology and to disease. Each biological pathway must be hewn from a mass of biological information distributed across multiple publications and databases. The particular challenge of pathway curation is amplified, because pathways are often presented as static images that are not amenable to computation, integration, or data exchange. Furthermore, pathway experts are distributed throughout the world, and most have limited time to learn about complex databases that need their expertise. This challenge can be met by taking the opportunity to develop a new community-based model for pathway curation. One way to engage the community is with a wiki model, as exemplified by Wikipedia [1]. We see the potential for a wiki-based pathway curation resource, coupled with an embedded graphical pathway editing tool, to meet the growing challenge presented by the influx of biological data and to provide an innovative example of content curation by the biology community (Figure 1). Figure 1 Two Models for Managing Biological Data
0
Citation643
0
Save
0

WikiPathways: building research communities on biological pathways

Thomas Kelder et al.Nov 16, 2011
Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.
0
Citation520
0
Save
0

PathVisio 3: An Extendable Pathway Analysis Toolbox

Martina Kutmon et al.Feb 23, 2015
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
0

CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms

Camille Terfve et al.Oct 18, 2012
Abstract Background Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Results Here we present CellNOptR , an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape ( CytoCopteR ) to facilitate use and integration with Cytoscape network-based capabilities. Conclusions Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.