WL
Weiqi Luo
Author with expertise in Digital Image Watermarking Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
910
h-index:
27
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Edge Adaptive Image Steganography Based on LSB Matching Revisited

Weiqi Luo et al.Feb 17, 2010
The least-significant-bit (LSB)-based approach is a popular type of steganographic algorithms in the spatial domain. However, we find that in most existing approaches, the choice of embedding positions within a cover image mainly depends on a pseudorandom number generator without considering the relationship between the image content itself and the size of the secret message. Thus the smooth/flat regions in the cover images will inevitably be contaminated after data hiding even at a low embedding rate, and this will lead to poor visual quality and low security based on our analysis and extensive experiments, especially for those images with many smooth regions. In this paper, we expand the LSB matching revisited image steganography and propose an edge adaptive scheme which can select the embedding regions according to the size of secret message and the difference between two consecutive pixels in the cover image. For lower embedding rates, only sharper edge regions are used while keeping the other smoother regions as they are. When the embedding rate increases, more edge regions can be released adaptively for data hiding by adjusting just a few parameters. The experimental results evaluated on 6000 natural images with three specific and four universal steganalytic algorithms show that the new scheme can enhance the security significantly compared with typical LSB-based approaches as well as their edge adaptive ones, such as pixel-value-differencing-based approaches, while preserving higher visual quality of stego images at the same time.
0

FedMCT: A Federated Framework for Intellectual Property Protection and Malicious Client Tracking

Qianyi Chen et al.Feb 2, 2024
In the era of big data, federated learning (FL) emerges as a solution to train models collectively without exposing individual data, maintaining similar accuracy to models trained on shared datasets. However, challenges arise with the advent of privacy inference attacks and model theft, posing significant threats to the privacy of FL models, especially regarding intellectual property (IP) protection. This paper introduces FedMCT (Federated Malicious Client Tracking), a novel framework addressing these challenges in the FL context. The FedMCT framework is a new approach to protect IP rights of FL clients and track cheaters, which can improve efficiency in resource-heterogeneous environments. By embedding unique watermarks or fingerprints in Deep Neural Network (DNN) models, we can protect model IP. We employ a configuration round before watermark embedding, segmenting clients based on performance for tiered model watermarking. We also propose a tiered watermarking and traitor tracking mechanism, which reduces the tracking time and ensures high traitor tracking efficiency. Extensive experiments validate our solution's efficacy in maintaining original model performance, watermark privacy, and detectability, robust against various attacks, demonstrating superior traitor tracing efficiency compared to existing frameworks.