AF
A. Fleischmann
Author with expertise in Neutrino Flavor Transformation and Detection
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
948
h-index:
29
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A White Paper on keV sterile neutrino Dark Matter

Rathin Adhikari et al.Jan 1, 2017
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
0

Projected background and sensitivity of AMoRE-II

A. Agrawal et al.Jan 8, 2025
Abstract AMoRE-II aims to search for neutrinoless double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) with an array of 423 $$\hbox {Li}_2^{100}\hbox {MoO}_4$$ Li 2 100 MoO 4 crystals operating in the cryogenic system as the main phase of the Advanced Molybdenum-based Rare process Experiment (AMoRE). AMoRE has been planned to operate in three phases: AMoRE-pilot, AMoRE-I, and AMoRE-II. AMoRE-II is currently being installed at the Yemi Underground Laboratory, located approximately 1000 m deep in Jeongseon, Korea. The goal of the experiment is to reach an exclusion half-life sensitivity to the $$0\nu \beta \beta $$ 0 ν β β of $$^{100}$$  100  Mo on the level of $$T^{0\nu \beta \beta }_{1/2} > 6 \times 10^{26}$$ T 1 / 2 0 ν β β > 6 ×  10 26  year that covers completely the inverted Majorana neutrino mass hierarchy region of (15–46) meV. To achieve this, the background level of the experimental configurations and possible background sources of gamma and beta events should be well understood. We have intensively performed Monte Carlo simulations using the GEANT4 toolkit in all the experimental configurations with potential sources. We report the estimated background level that meets the $$10^{-4}$$  10 - 4  counts/(keV $$\cdot $$ · kg $$\cdot $$ · year) requirement for AMoRE-II in the Region Of Interest (ROI) and show the projected half-life sensitivity based on the simulation study.