KI
Kayo Inaba
Author with expertise in Immunobiology of Dendritic Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
8,716
h-index:
58
/
i10-index:
114
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dendritic Cells Induce Peripheral T Cell Unresponsiveness under Steady State Conditions in Vivo

Daniel Hawiger et al.Sep 17, 2001
Dendritic cells (DCs) have the capacity to initiate immune responses, but it has been postulated that they may also be involved in inducing peripheral tolerance. To examine the function of DCs in the steady state we devised an antigen delivery system targeting these specialized antigen presenting cells in vivo using a monoclonal antibody to a DC-restricted endocytic receptor, DEC-205. Our experiments show that this route of antigen delivery to DCs is several orders of magnitude more efficient than free peptide in complete Freund's adjuvant (CFA) in inducing T cell activation and cell division. However, T cells activated by antigen delivered to DCs are not polarized to produce T helper type 1 cytokine interferon γ and the activation response is not sustained. Within 7 d the number of antigen-specific T cells is severely reduced, and the residual T cells become unresponsive to systemic challenge with antigen in CFA. Coinjection of the DC-targeted antigen and anti-CD40 agonistic antibody changes the outcome from tolerance to prolonged T cell activation and immunity. We conclude that in the absence of additional stimuli DCs induce transient antigen-specific T cell activation followed by T cell deletion and unresponsiveness.
0

Direct Expansion of Functional CD25+ CD4+ Regulatory T Cells by Antigen-processing Dendritic Cells

Sayuri Yamazaki et al.Jul 21, 2003
An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.
0

Developmental regulation of MHC class II transport in mouse dendritic cells

Philippe Pierre et al.Aug 21, 1997
Dendritic cells (DCs) have the unique capacity to initiate primary and secondary immune responses1,2,3. They acquire antigens in peripheral tissues and migrate to lymphoid organs where they present processed peptides to T cells. DCs must therefore exist in distinct functional states, an idea that is supported by observations that they downregulate endocytosis and upregulate surface molecules of the class II major histocompatibility complex (MHC) upon maturation4,5,6,7. Here we investigate the features of DC maturation by reconstituting the terminal differentiation of mouse DCs in vitro and in situ. We find that early DCs, corresponding to those found in peripheral tissues, exhibit a phenotype in which most class II molecules are intracellular and localized to lysosomes. Upon maturation, these cells give rise to a new intermediate phenotype in which intracellular class II molecules are found in peripheral non-lysosomal vesicles, similar to the specialized CIIV population seen in B cells. The intermediate cells then differentiate into late DCs which express almost all of their class II molecules on the plasma membrane. These variations in class II compartmentalization are accompanied by dramatic alterations in the intracellular transport of the new class II molecules and in antigen presentation. We found that although early DCs could not present antigen immediately after uptake, efficient presentation of the previously internalized antigen occurred after maturation, 24–48 hours later. By regulating class II transport and compartmentalization, DCs are able to delay antigen display, a property crucial to their role in immune surveillance.
0
Citation751
0
Save
0

Efficient Presentation of Phagocytosed Cellular Fragments on the Major Histocompatibility Complex Class II Products of Dendritic Cells

Kayo Inaba et al.Dec 7, 1998
Cells from the bone marrow can present peptides that are derived from tumors, transplants, and self-tissues. Here we describe how dendritic cells (DCs) process phagocytosed cell fragments onto major histocompatibility complex (MHC) class II products with unusual efficacy. This was monitored with the Y-Ae monoclonal antibody that is specific for complexes of I-Ab MHC class II presenting a peptide derived from I-Eα. When immature DCs from I-Ab mice were cultured for 5–20 h with activated I-E+ B blasts, either necrotic or apoptotic, the DCs produced the epitope recognized by the Y-Ae monoclonal antibody and stimulated T cells reactive with the same MHC–peptide complex. Antigen transfer was also observed with human cells, where human histocompatibility leukocyte antigen (HLA)-DRα includes the same peptide sequence as mouse I-Eα. Antigen transfer was preceded by uptake of B cell fragments into MHC class II–rich compartments. Quantitation of the amount of I-E protein in the B cell fragments revealed that phagocytosed I-E was 1–10 thousand times more efficient in generating MHC–peptide complexes than preprocessed I-E peptide. When we injected different I-E– bearing cells into C57BL/6 mice to look for a similar phenomenon in vivo, we found that short-lived migrating DCs could be processed by most of the recipient DCs in the lymph node. The consequence of antigen transfer from migratory DCs to lymph node DCs is not yet known, but we suggest that in the steady state, i.e., in the absence of stimuli for DC maturation, this transfer leads to peripheral tolerance of the T cell repertoire to self.
0

The CD8+ Dendritic Cell Subset Selectively Endocytoses Dying Cells in Culture and In Vivo

Tomonori Iyoda et al.May 20, 2002
Dendritic cells (DCs) are able in tissue culture to phagocytose and present antigens derived from infected, malignant, and allogeneic cells. Here we show directly that DCs in situ take up these types of cells after fluorescent labeling with carboxyfluorescein succinimidyl ester (CFSE) and injection into mice. The injected cells include syngeneic splenocytes and tumor cell lines, induced to undergo apoptosis ex vivo by exposure to osmotic shock, and allogeneic B cells killed by NK cells in situ. The CFSE-labeled cells in each case are actively endocytosed by DCs in vivo, but only the CD8+ subset. After uptake, all of the phagocytic CD8+ DCs can form major histocompatibility complex class II–peptide complexes, as detected with a monoclonal antibody specific for these complexes. The CD8+ DCs also selectively present cell-associated antigens to both CD4+ and CD8+ T cells. Similar events take place with cultured DCs; CD8+ DCs again selectively take up and present dying cells. In contrast, both CD8+ and CD8− DCs phagocytose latex particles in culture, and both DC subsets present soluble ovalbumin captured in vivo. Therefore CD8+ DCs are specialized to capture dying cells, and this helps to explain their selective ability to cross present cellular antigens to both CD4+ and CD8+ T cells.
0

Immune Tolerance After Delivery of Dying Cells to Dendritic Cells In Situ

Kang Liu et al.Oct 14, 2002
Peripheral immune tolerance is believed to be induced by the processing and presentation of self-tissues that die during physiologic tissue turnover. To examine the mechanism that mediates tolerance, we injected mice with dying syngeneic TAP−/− splenocytes loaded with small amounts of the protein antigen, ovalbumin (OVA). After ingestion and presentation of cell-associated OVA by the CD8+ subset of dendritic cells in situ, large numbers of antigen-reactive, CD8+ T cell receptor (TCR) transgenic T lymphocytes were driven into cell cycle, but then the T cells were deleted. The animals were also tolerant to challenge with OVA in complete Freund's adjuvant. An agonistic anti-CD40 monoclonal antibody was then administered together with the OVA-loaded splenocytes, so that the dendritic cells in the recipient mice would mature. In contrast to observations made in the steady state, the antigen-reactive T cells expanded in numbers for 1–2 wk and produced large amounts of interleukin 2 and interferon γ, while the animals retained responsiveness to antigen rechallenge. The specific tolerance that develops when dendritic cells process self tissues in the steady state should prevent or reduce the development of autoimmunity when dying cells are subsequently processed during infection.
Load More