PQ
Patricia Quinn
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
27
(74% Open Access)
Cited by:
16,316
h-index:
98
/
i10-index:
239
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bounding the role of black carbon in the climate system: A scientific assessment

Tami Bond et al.Apr 22, 2013
Abstract Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black‐carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom‐up inventory methods are 7500 Gg yr −1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial‐era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m −2 with 90% uncertainty bounds of (+0.08, +1.27) W m −2 . Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m −2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial‐era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m −2 with 90% uncertainty bounds of +0.17 to +2.1 W m −2 . Thus, there is a very high probability that black carbon emissions, independent of co‐emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m −2 , is the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate. Climate forcings from co‐emitted species are estimated and used in the framework described herein. When the principal effects of short‐lived co‐emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy‐related sources (fossil fuel and biofuel) have an industrial‐era climate forcing of +0.22 (−0.50 to +1.08) W m −2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short‐lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial‐era climate forcing by all short‐lived species from black‐carbon‐rich sources becomes slightly negative (−0.06 W m −2 with 90% uncertainty bounds of −1.45 to +1.29 W m −2 ). The uncertainties in net climate forcing from black‐carbon‐rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co‐emitted organic carbon. In prioritizing potential black‐carbon mitigation actions, non‐science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near‐term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black‐carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
0
Paper
Citation5,891
0
Save
0

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo‐Asian haze

V. Ramanathan et al.Nov 1, 2001
Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo‐Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one‐ and four‐dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long‐range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single‐scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo‐Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (‐20±4 W m −2 ) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.
0
Paper
Citation1,407
0
Save
0

Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations

Lyatt Jaeglé et al.Apr 4, 2011
Abstract. We combine in situ measurements of sea salt aerosols (SS) from open ocean cruises and ground-based stations together with aerosol optical depth (AOD) observations from MODIS and AERONET, and the GEOS-Chem global chemical transport model to provide new constraints on SS emissions over the world's oceans. We find that the GEOS-Chem model using the Gong (2003) source function overestimates cruise observations of coarse mode SS mass concentrations by factors of 2–3 at high wind speeds over the cold waters of the Southern, North Pacific and North Atlantic Oceans. Furthermore, the model systematically underestimates SS over the warm tropical waters of the Central Pacific, Atlantic, and Indian Oceans. This pattern is confirmed by SS measurements from a global network of 15 island and coastal stations. The model discrepancy at high wind speeds (>6 m s −1) has a clear dependence on sea surface temperature (SST). We use the cruise observations to derive an empirical SS source function depending on both wind speed and SST. Implementing this new source function in GEOS-Chem results in improved agreement with in situ observations, with a decrease in the model bias from +64% to +33% for the cruises and from +32% to −5% for the ground-based sites. We also show that the wind speed-SST source function significantly improves agreement with MODIS and AERONET AOD, and provides an explanation for the high AOD observed over the tropical oceans. With the wind speed-SST formulation, global SS emissions show a small decrease from 5200 Mg yr−1 to 4600 Mg yr−1, while the SS burden decreases from 9.1 to 8.5 mg m−2. The spatial distribution of SS, however, is greatly affected, with the SS burden increasing by 50% in the tropics and decreasing by 40% at mid- and high-latitudes. Our results imply a stronger than expected halogen source from SS in the tropical marine boundary layer. They also imply stronger radiative forcing of SS in the tropics and a larger response of SS emissions to climate change than previously thought.
0
Paper
Citation637
0
Save
0

A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry

Joel Thornton et al.Mar 1, 2010
Chlorine atoms can profoundly affect the composition of the atmosphere. Notoriously, as chlorofluorocarbons, they were implicated in ozone depletion in the stratosphere. New observations suggest that chlorine may be a more potent force lower down in the atmosphere than was thought. The presence of gaseous chlorine atom precursors in the troposphere is generally considered a marine air phenomenon. But measurements made near Boulder, Colorado, reveal significant production of atmospheric nitryl chloride (ClNO2) in a continental setting, 1,400 km from the nearest coastline. This finding, incorporated into model studies, suggests that nitryl chloride production in the contiguous United States alone — probably arising from anthropogenic pollutants — is at a level similar to previous global estimates for marine regions. The presence of gaseous chlorine atom precursors within the troposphere was thought only to occur in marine areas but now nitryl chloride has been found at a distance of 1,400 km from the nearest coastline. A model study shows that the amount of nitryl chloride production in the continental USA alone is similar to previous global estimates for marine regions. A significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants. Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury1 and hydrocarbons such as the greenhouse gas methane2. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone3, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon4. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions5. We also suggest that a significant fraction of tropospheric chlorine atoms6 may arise directly from anthropogenic pollutants.
0
Paper
Citation619
0
Save
0

ACE-Asia Intercomparison of a Thermal-Optical Method for the Determination of Particle-Phase Organic and Elemental Carbon

James Schauer et al.Jan 23, 2003
A laboratory intercomparison of organic carbon (OC) and elemental carbon (EC) measurements of atmospheric particulate matter samples collected on quartz filters was conducted among eight participants of the ACE-Asia field experiment. The intercomparison took place in two stages: the first round of the intercomparison was conducted when filter samples collected during the ACE-Asia experiment were being analyzed for OC and EC, and the second round was conducted after the ACE-Asia experiment and included selected samples from the ACE-Asia experiment. Each participant operated ECOC analyzers from the same manufacturer and utilized the same analysis protocol for their measurements. The precision of OC measurements of quartz fiber filters was a function of the filter's carbon loading but was found to be in the range of 4−13% for OC loadings of 1.0−25 μg of C cm-2. For measurements of EC, the precision was found to be in the range of 6−21% for EC loadings in the range of 0.7−8.4 μg of C cm-2. It was demonstrated for three ambient samples, four source samples, and three complex mixtures of organic compounds that the relative amount of total evolved carbon allocated as OC and EC (i.e., the ECOC split) is sensitive to the temperature program used for analysis, and the magnitude of the sensitivity is dependent on the types of aerosol particles collected. The fraction of elemental carbon measured in wood smoke and an extract of organic compounds from a wood smoke sample were sensitive to the temperature program used for the ECOC analysis. The ECOC split for the three ambient samples and a coal fly ash sample showed moderate sensitivity to temperature program, while a carbon black sample and a sample of secondary organic aerosol were measured to have the same split of OC and EC with all temperature programs that were examined.
0

Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting

Lynn Russell et al.Dec 23, 2009
Oceans cover over two-thirds of the Earth’s surface, and the particles emitted to the atmosphere by waves breaking on sea surfaces provide an important contribution to the planetary albedo. During the International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT) cruise on the R/V Knorr in March and April of 2008, organic mass accounted for 15–47% of the submicron particle mass in the air masses sampled over the North Atlantic and Arctic Oceans. A majority of this organic component (0.1 - 0.4 μ m -3 ) consisted of organic hydroxyl (including polyol and other alcohol) groups characteristic of saccharides, similar to biogenic carbohydrates found in seawater. The large fraction of organic hydroxyl groups measured during ICEALOT in submicron atmospheric aerosol exceeded those measured in most previous campaigns but were similar to particles in marine air masses in the open ocean (Southeast Pacific Ocean) and coastal sites at northern Alaska (Barrow) and northeastern North America (Appledore Island and Chebogue Point). The ocean-derived organic hydroxyl mass concentration during ICEALOT correlated strongly to submicron Na concentration and wind speed. The observed submicron particle ratios of marine organic mass to Na were enriched by factors of ∼10 2 –∼10 3 over reported sea surface organic to Na ratios, suggesting that the surface-controlled process of film bursting is influenced by the dissolved organic components present in the sea surface microlayer. Both marine organic components and Na increased with increasing number mean diameter of the accumulation mode, suggesting a possible link between organic components in the ocean surface and aerosol–cloud interactions.
0
Paper
Citation404
0
Save
Load More