DW
David Wake
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(100% Open Access)
Cited by:
9,981
h-index:
72
/
i10-index:
133
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

Shadab Alam et al.Mar 24, 2017
+65
C
S
S
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DMH from the Alcock–Paczynski (AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between DM and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = −1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 km s−1 Mpc−1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s−1 Mpc−1. Assuming flat ΛCDM, we find Ωm = 0.310 ± 0.005 and H0 = 67.6 ± 0.5 km s−1 Mpc−1, and we find a 95 per cent upper limit of 0.16 eV c−2 on the neutrino mass sum.
0

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples

Lauren Anderson et al.Apr 21, 2014
+61
É
J
L
We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < |$z$| < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd,fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd,fid) at |$z$| = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd,fid) at |$z$| = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at |$z$| = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ± 3.4 km s−1 Mpc−1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.
0

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample

Lauren Anderson et al.Dec 21, 2012
+72
S
É
L
We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance ΛCDM cosmological model, this sample covers an effective volume of 2.2 Gpc3, and represents the largest sample of the Universe ever surveyed at this density, . We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5σ in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7σ. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon DV/rs = 13.67 ± 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance DV (z = 0.57) = 2094 ± 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.
0

THE GROWTH OF MASSIVE GALAXIES SINCEz= 2

Pieter Dokkum et al.Jan 11, 2010
+11
G
K
P
We study the growth of massive galaxies from z=2 to the present using data from the NEWFIRM Medium Band Survey. The sample is selected at a constant number density of n=2x10^-4 Mpc^-3, so that galaxies at different epochs can be compared in a meaningful way. We show that the stellar mass of galaxies at this number density has increased by a factor of ~2 since z=2, following the relation log(M)=11.45-0.15z. In order to determine at what physical radii this mass growth occurred we construct very deep stacked rest-frame R-band images at redshifts z=0.6, 1.1, 1.6, and 2.0. These image stacks of typically 70-80 galaxies enable us to characterize the stellar distribution to surface brightness limits of ~28.5 mag/arcsec^2. We find that massive galaxies gradually built up their outer regions over the past 10 Gyr. The mass within a radius of r=5 kpc is nearly constant with redshift whereas the mass at 5-75 kpc has increased by a factor of ~4 since z=2. Parameterizing the surface brightness profiles we find that the effective radius and Sersic n parameter evolve as r_e~(1+z)^-1.3 and n~(1+z)^-1.0 respectively. The data demonstrate that massive galaxies have grown mostly inside-out, assembling their extended stellar halos around compact, dense cores with possibly exponential radial density distributions. Comparing the observed mass evolution to the average star formation rates of the galaxies we find that the growth is likely dominated by mergers, as in-situ star formation can only account for ~20% of the mass build-up from z=2 to z=0. The main uncertainties in this study are possible redshift-dependent systematic errors in the total stellar masses and the conversion from light-weighted to mass-weighted radial profiles.
0

Cosmological implications of baryon acoustic oscillation measurements

É. Aubourg et al.Dec 14, 2015
+90
J
S
É
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-$\ensuremath{\alpha}$ forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an ``inverse distance ladder'' yields a measurement of ${H}_{0}=67.3\ifmmode\pm\else\textpm\fi{}1.1\text{ }\text{ }\mathrm{km}\text{ }{\mathrm{s}}^{\ensuremath{-}1}\text{ }{\mathrm{Mpc}}^{\ensuremath{-}1}$, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ cosmology is an important corroboration of this minimal cosmological model. For constant dark energy ($\mathrm{\ensuremath{\Lambda}}$), our $\mathrm{BAO}+\mathrm{SN}+\mathrm{CMB}$ combination yields matter density ${\mathrm{\ensuremath{\Omega}}}_{m}=0.301\ifmmode\pm\else\textpm\fi{}0.008$ and curvature ${\mathrm{\ensuremath{\Omega}}}_{k}=\ensuremath{-}0.003\ifmmode\pm\else\textpm\fi{}0.003$. When we allow more general forms of evolving dark energy, the $\mathrm{BAO}+\mathrm{SN}+\mathrm{CMB}$ parameter constraints are always consistent with flat $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ values at $\ensuremath{\approx}1\ensuremath{\sigma}$. While the overall ${\ensuremath{\chi}}^{2}$ of model fits is satisfactory, the LyaF BAO measurements are in moderate ($2--2.5\ensuremath{\sigma}$) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher ${H}_{0}$ and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, $\ensuremath{\sum}{m}_{\ensuremath{\nu}}<0.56\text{ }\text{ }\mathrm{eV}$ (95% confidence), improving to $\ensuremath{\sum}{m}_{\ensuremath{\nu}}<0.25\text{ }\text{ }\mathrm{eV}$ if we include the lensing signal in the Planck CMB power spectrum. In a flat $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ model that allows extra relativistic species, our data combination yields ${N}_{\mathrm{eff}}=3.43\ifmmode\pm\else\textpm\fi{}0.26$; while the LyaF BAO data prefer higher ${N}_{\mathrm{eff}}$ when excluding galaxy BAO, the galaxy BAO alone favor ${N}_{\mathrm{eff}}\ensuremath{\approx}3$. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.
0

OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

Kevin Bundy et al.Dec 10, 2014
+65
D
M
K
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
0

SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY

A. Bolton et al.Oct 11, 2012
+29
É
D
A
(abridged) We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of Data Release 9, encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected CMASS sample of massive galaxies at redshift 0.4 <~ z <~ 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that ~0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and ~0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that ~51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km/s for both galaxies and quasars, with a significant tail to a few hundreds of km/s for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19 to 1.34 for galaxies, and by a factor of 2 for quasars. We assess the impact of sky-subtraction quality, S/N, and other factors on galaxy redshift success. Finally, we document known issues, and describe directions of ongoing development.
0

3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCEz= 3

Arjen Wel et al.May 19, 2014
+27
P
M
A
Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size–mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, Reff∝(1 + z)−1.48, and moderate evolution for the late-type population, Reff∝(1 + z)−0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size–mass relation is shallow, , for late-type galaxies with stellar mass >3 × 109 M☉, and steep, , for early-type galaxies with stellar mass >2 × 1010 M☉. The intrinsic scatter is ≲0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (∼1011 M☉), compact (Reff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5–2 and then strongly decreases at later cosmic times.
0

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate atz= 0.57 from anisotropic clustering

Beth Reid et al.Oct 17, 2012
+44
M
L
B
We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3,275 square degrees. Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broadband shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a LCDM expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of DA, H, and growth all separately require dark energy at z > 0.57, and when combined imply \Omega_{\Lambda} = 0.74 +/- 0.016, independent of the Universe's evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.
0

SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues

Beth Reid et al.Nov 17, 2015
+39
N
S
B
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.
Load More