DX
Dianne Xiao
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
1,483
h-index:
21
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites

Dianne Xiao et al.May 18, 2014
Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species. Selective functionalization of light hydrocarbons is a challenging but desirable transformation. Now a family of Fe(II)-based metal–organic frameworks has been shown to convert ethane into ethanol and acetaldehyde using N2O. Electronic structure calculations indicate that the active Fe oxidant in the MOF is a high-spin S = 2 iron(II)–oxo species.
0

M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites

Matthew Kapelewski et al.Aug 18, 2014
The well-known frameworks of the type M2(dobdc) (dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H2. Employing a related meta-functionalized linker that is readily obtained from resorcinol, we now report a family of structural isomers of this framework, M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni; m-dobdc4– = 4,6-dioxido-1,3-benzenedicarboxylate), featuring exposed M2+ cation sites with a higher apparent charge density. The regioisomeric linker alters the symmetry of the ligand field at the metal sites, leading to increases of 0.4–1.5 kJ/mol in the H2 binding enthalpies relative to M2(dobdc). A variety of techniques, including powder X-ray and neutron diffraction, inelastic neutron scattering, infrared spectroscopy, and first-principles electronic structure calculations, are applied in elucidating how these subtle structural and electronic differences give rise to such increases. Importantly, similar enhancements can be anticipated for the gas storage and separation properties of this new family of robust and potentially inexpensive metal–organic frameworks.
0

Controlling the Crystal Packing and Morphology of Metal–Organic Macrocycles through Side-Chain Modification

Leo Zasada et al.Jun 14, 2024
Supramolecular nanotubes constructed from the self-assembly of conjugated metal–organic macrocycles provide a unique collection of materials properties, including solution processability, porosity, and electrical conductivity. Here we show how small modifications to the macrocycle periphery subtly alter the noncovalent interactions governing self-assembly, leading to large changes in crystal packing, crystal morphology, and materials properties. Specifically, we synthesized five distinct copper-based macrocycles that differ in either the steric bulk, polarity, or hydrogen-bonding ability of the peripheral side chains. We show that the electrical conductivity of these macrocycles is highly sensitive to steric bulk, decreasing by 3 orders of magnitude upon introduction of peripheral neopentyl substituents. We further show that the introduction of hydrogen-bonding groups leads to more ordered packing and a dramatic increase in crystallite size. Together, these results establish side-chain engineering as a rich toolkit for controlling the packing structure, particle morphology, and bulk properties of conjugated metal–organic macrocycles.
0

Nitrogen‐Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO2 Capture

Phuong Le et al.Dec 5, 2024
Here we report a series of nitrogen‐rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal–organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni–N and phenazine‐based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal–organic macrocycles, good out‐of‐plane charge transport is preserved, with pressed pellet conductivities of 10–3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine‐based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.
0

Nitrogen‐Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO2 Capture

Phuong Le et al.Dec 5, 2024
Here we report a series of nitrogen‐rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal–organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni–N and phenazine‐based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal–organic macrocycles, good out‐of‐plane charge transport is preserved, with pressed pellet conductivities of 10–3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine‐based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.