AC
Andrew Cho
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
1,336
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Survey of spiking in the mouse visual system reveals functional hierarchy

Joshua Siegle et al.Jan 20, 2021
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset—part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures—response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale—are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas. A large, open dataset containing parallel recordings from six visual cortical and two thalamic areas of the mouse brain is presented, from which the relative timing of activity in response to visual stimuli and behaviour is used to construct a hierarchy scheme that corresponds to anatomical connectivity data.
0

The organization of intracortical connections by layer and cell class in the mouse brain

Julie Harris et al.Apr 1, 2018
Abstract The mammalian cortex is a laminar structure composed of many cell types densely interconnected in complex ways. Recent systematic efforts to map the mouse mesoscale connectome provide comprehensive projection data on interareal connections, but not at the level of specific cell classes or layers within cortical areas. We present here a significant expansion of the Allen Mouse Brain Connectivity Atlas, with ∼1,000 new axonal projection mapping experiments across nearly all isocortical areas in 49 Cre driver lines. Using 13 lines selective for cortical layer-specific projection neuron classes, we identify the differential contribution of each layer/class to the overall intracortical connectivity patterns. We find layer 5 (L5) projection neurons account for essentially all intracortical outputs. L2/3, L4, and L6 neurons contact a subset of the L5 cortical targets. We also describe the most common axon lamination patterns in cortical targets. Most patterns are consistent with previous anatomical rules used to determine hierarchical position between cortical areas (feedforward, feedback), with notable exceptions. While diverse target lamination patterns arise from every source layer/class, L2/3 and L4 neurons are primarily associated with feedforward type projection patterns and L6 with feedback. L5 has both feedforward and feedback projection patterns. Finally, network analyses revealed a modular organization of the intracortical connectome. By labeling interareal and intermodule connections as feedforward or feedback, we present an integrated view of the intracortical connectome as a hierarchical network.
96

Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology

Joshua Siegle et al.Aug 11, 2020
Abstract Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of neurons in the brain. While these two modalities have distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging or electrophysiology. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging. This work explores which data transformations are most useful for explaining these modality-specific discrepancies. We show that the higher selectivity in imaging can be partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could not reconcile differences in responsiveness without sub-selecting neurons based on event rate or level of signal contamination. This suggests that differences in responsiveness more likely reflect neuronal sampling bias or cluster-merging artifacts during spike sorting of electrophysiological recordings, rather than flaws in event detection from fluorescence time series. This work establishes the dominant impacts of the two modalities’ respective biases on a set of functional metrics that are fundamental for characterizing sensory-evoked responses.
0

A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas

Joshua Siegle et al.Oct 16, 2019
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory ) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas . Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system.
0

A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex

Saskia Vries et al.Jun 29, 2018
To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of neural activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons collected from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to a systematic set of visual stimuli. Using this dataset, we reveal functional differences across these dimensions and show that visual cortical responses are sparse but correlated. Surprisingly, responses to different stimuli are largely independent, e.g. whether a neuron responds to natural scenes provides no information about whether it responds to natural movies or to gratings. We show that these phenomena cannot be explained by standard local filter-based models, but are consistent with multi-layer hierarchical computation, as found in deeper layers of standard convolutional neural networks.
24

Measuring stimulus-evoked neurophysiological differentiation in distinct populations of neurons in mouse visual cortex

William Mayner et al.Nov 27, 2020
Abstract Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis —quantifying distinct patterns of neurophysiological activity—is an “inside out” approach that addresses this question. We used two-photon calcium imaging in mice to systematically survey stimulus-evoked neurophysiological differentiation in excitatory populations across 3 cortical layers (L2/3, L4, and L5) in each of 5 visual cortical areas (primary, lateral, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater neurophysiological differentiation than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. Contrariwise, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.
46

Stimulus novelty uncovers coding diversity in visual cortical circuits

Marina Garrett et al.Feb 15, 2023
The detection of novel stimuli is critical to learn and survive in a dynamic environment. Though novel stimuli powerfully affect brain activity, their impact on specific cell types and circuits is not well understood. Disinhibition is one candidate mechanism for novelty-induced enhancements in activity. Here we characterize the impact of stimulus novelty on disinhibitory circuit components using longitudinal 2-photon calcium imaging of Vip, Sst, and excitatory populations in the mouse visual cortex. Mice learn a behavioral task with stimuli that become highly familiar, then are tested on both familiar and novel stimuli. Mice consistently perform the task with novel stimuli, yet responses to stimulus presentations and stimulus omissions are dramatically altered. Further, we find that novelty modifies coding of visual as well as behavioral and task information. At the population level, the direction of these changes is consistent with engagement of the Vip-Sst disinhibitory circuit. At the single cell level, we identify separate clusters of Vip, Sst, and excitatory cells with unique patterns of novelty-induced coding changes. This study and the accompanying open-access dataset reveals the impact of novelty on sensory and behavioral representations in visual cortical circuits and establishes novelty as a key driver of cellular functional diversity.