EL
Emily Landis
Author with expertise in Importance of Mangrove Ecosystems in Coastal Protection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
3,480
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A global map of mangrove forest soil carbon at 30 m spatial resolution

Jonathan Sanderman et al.Apr 13, 2018
With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.
0
Paper
Citation313
0
Save
0

National mitigation potential from natural climate solutions in the tropics

Bronson Griscom et al.Jan 27, 2020
Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)—protection, improved management and restoration of ecosystems—to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO 2 e yr −1 at less than 100 US$ per Mg CO 2 e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
0
Paper
Citation231
0
Save
0

Soil carbon in the world's tidal marshes

Tania Maxwell et al.Apr 29, 2024
Tidal marshes are threatened coastal ecosystems known for their capacity to store large amounts of carbon in their water-logged soils. Accurate quantification and mapping of global tidal marshes soil organic carbon (SOC) stocks is of considerable value to conservation efforts. Here, we used training data from 3,710 unique locations, landscape-level environmental drivers and a newly developed global tidal marsh extent map to produce the first global, spatially-explicit map of SOC storage in tidal marshes at 30 m resolution. We estimate the total global SOC stock to 1 m to be 1.44 Pg C, with a third of this value stored in the United States of America. On average, SOC in tidal marshes' 0-30 and 30-100 cm soil layers are estimated at 83.1 Mg C ha -1 (average predicted error 44.8 Mg C ha -1 ) and 185.3 Mg C ha -1 (average predicted error 105.7 Mg C ha -1 ), respectively. Our spatially-explicit model is able to capture 59% of the variability in SOC density, with elevation being the strongest driver aside from soil depth. Our study reveals regions with high prediction uncertainty and therefore highlights the need for more targeted sampling to fully capture SOC spatial variability.
0
0
Save
37

The distribution of global tidal marshes from earth observation data

Thomas Worthington et al.May 28, 2023
ABSTRACT Aim Tidal marsh ecosystems are heavily impacted by human activities, highlighting a pressing need to address gaps in our knowledge of their distribution. To better understand the global distribution and changes in tidal marsh extent, and identify opportunities for their conservation and restoration, it is critical to develop a spatial knowledge base of their global occurrence. Here, we develop a globally consistent tidal marsh distribution map for the year 2020 at 10-m resolution. Location Global Time period 2020 Major taxa studied Tidal marshes Methods To map the location of the world’s tidal marshes we applied a random forest classification model to earth observation data from the year 2020. We trained the classification model with a reference dataset developed to support distribution mapping of coastal ecosystems, and predicted the spatial distribution of tidal marshes between 60°N to 60°S. We validated the tidal marsh map using standard accuracy assessment methods, with our final map having an overall accuracy score of 0.852. Results We estimate the global extent of tidal marshes in 2020 to be 52,880 km 2 (95% CI: 32,030 to 59,780 km 2 ) distributed across 120 countries and territories. Tidal marsh distribution is centred in temperate and Arctic regions, with nearly half of the global extent of tidal marshes occurring in the temperate Northern Atlantic (45%) region. At the national scale, over a third of the global extent (18,510 km 2 ; CI: 11,200 – 20,900) occurs within the USA. Main conclusions Our analysis provides the most detailed spatial data on global tidal marsh distribution to date and shows that tidal marshes occur in more countries and across a greater proportion of the world’s coastline than previous mapping studies. Our map fills a major knowledge gap regarding the distribution of the world’s coastal ecosystems and provides the baseline needed for measuring changes in tidal marsh extent and estimating their value in terms of ecosystem services
37
0
Save