VK
Vipin Kumar
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
195
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles

Ieva Rauluševičiūtė et al.Nov 14, 2023
JASPAR (https://jaspar.elixir.no/) is a widely-used open-access database presenting manually curated high-quality and non-redundant DNA-binding profiles for transcription factors (TFs) across taxa. In this 10th release and 20th-anniversary update, the CORE collection has expanded with 329 new profiles. We updated three existing profiles and provided orthogonal support for 72 profiles from the previous release's UNVALIDATED collection. Altogether, the JASPAR 2024 update provides a 20% increase in CORE profiles from the previous release. A trimming algorithm enhanced profiles by removing low information content flanking base pairs, which were likely uninformative (within the capacity of the PFM models) for TFBS predictions and modelling TF-DNA interactions. This release includes enhanced metadata, featuring a refined classification for plant TFs' structural DNA-binding domains. The new JASPAR collections prompt updates to the genomic tracks of predicted TF binding sites (TFBSs) in 8 organisms, with human and mouse tracks available as native tracks in the UCSC Genome browser. All data are available through the JASPAR web interface and programmatically through its API and the updated Bioconductor and pyJASPAR packages. Finally, a new TFBS extraction tool enables users to retrieve predicted JASPAR TFBSs intersecting their genomic regions of interest.
0
Citation193
0
Save
316

Slide-tags: scalable, single-nucleus barcoding for multi-modal spatial genomics

Andrew Russell et al.Apr 3, 2023
Abstract Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed. Missing from these measurements, however, is the ability to routinely and easily spatially localise these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are ‘tagged’ with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 micron spatial resolution, and delivered whole-transcriptome data that was indistinguishable in quality from ordinary snRNA-seq. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil, and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualised receptor-ligand interactions driving B-cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to virtually any single-cell measurement technology. As proof of principle, we performed multiomic measurements of open chromatin, RNA, and T-cell receptor sequences in the same cells from metastatic melanoma. We identified spatially distinct tumour subpopulations to be differentially infiltrated by an expanded T-cell clone and undergoing cell state transition driven by spatially clustered accessible transcription factor motifs. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
0

Scalable imaging-free spatial genomics through computational reconstruction

Chenlei Hu et al.Aug 7, 2024
Tissue organization arises from the coordinated molecular programs of cells. Spatial genomics maps cells and their molecular programs within the spatial context of tissues. However, current methods measure spatial information through imaging or direct registration, which often require specialized equipment and are limited in scale. Here, we developed an imaging-free spatial transcriptomics method that uses molecular diffusion patterns to computationally reconstruct spatial data. To do so, we utilize a simple experimental protocol on two dimensional barcode arrays to establish an interaction network between barcodes via molecular diffusion. Sequencing these interactions generates a high dimensional matrix of interactions between different spatial barcodes. Then, we perform dimensionality reduction to regenerate a two-dimensional manifold, which represents the spatial locations of the barcode arrays. Surprisingly, we found that the UMAP algorithm, with minimal modifications can faithfully successfully reconstruct the arrays. We demonstrated that this method is compatible with capture array based spatial transcriptomics/genomics methods, Slide-seq and Slide-tags, with high fidelity. We systematically explore the fidelity of the reconstruction through comparisons with experimentally derived ground truth data, and demonstrate that reconstruction generates high quality spatial genomics data. We also scaled this technique to reconstruct high-resolution spatial information over areas up to 1.2 centimeters. This computational reconstruction method effectively converts spatial genomics measurements to molecular biology, enabling spatial transcriptomics with high accessibility, and scalability.